1. 原理:
通过学习率和学习方向 逐步调整,然后找损失最低的点
学习率: 不宜过大, 也不宜过下, 一般 0.01
学习方向: 调整回归系数的方向
2. api:
api: 接口位置
from sklearn.linear_model import SGDRegressor
初始化:
def __init__(fit_intercept=True, learning_rate="invscaling", eta0=0.01)
eta0:学习率
learning_rate:
'constant': eta = eta0
'optimal': eta = 1.0 / (alpha * (t + t0)) [default]
'invscaling': eta = eta0 / pow(t, power_t)
返回值:
回归系数: coef_
偏置: intercept_