梯度下降的介绍

本文介绍了梯度下降的基本原理,强调了学习率和学习方向的重要性,并探讨了sklearn库中SGDRegressor的使用,包括初始化参数如eta0和learning_rate的选择。此外,还详细说明了如何使用joblib保存模型。
摘要由CSDN通过智能技术生成

1. 原理:

通过学习率和学习方向 逐步调整,然后找损失最低的点

学习率: 不宜过大, 也不宜过下, 一般 0.01

学习方向: 调整回归系数的方向

2. api:

api: 接口位置

from sklearn.linear_model import SGDRegressor

初始化:

def __init__(fit_intercept=True, learning_rate="invscaling", eta0=0.01)

eta0:学习率

learning_rate:

'constant': eta = eta0

'optimal': eta = 1.0 / (alpha * (t + t0)) [default]

'invscaling': eta = eta0 / pow(t, power_t)

返回值:

回归系数: coef_

偏置: intercept_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐的记事本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值