【基于LSTM的多输出数据回归预测】附Matlab代码


前言

  在当前的数据驱动时代,测未来的趋势、需求、资源分配等成为了许多行业关键决策的基石。长短期记忆网络(Long Short-Term Memory, LSTM)作为一种特殊的循环神经网络(RNN),因其在处理时间序列数据上的卓越性能而受到广泛关注。LSTM能够学习长期依赖信息,解决了传统RNN在长序列学习过程中的梯度消失问题。在本文中,我们将探索如何利用LSTM进行多输出回归预测,即同时预测多个连续值输出,辅以实例代码加以说明,详细代码请见:https://www.kdocs.cn/l/cmQ0BXiurpbg。


在这里插入图片描述

一、LSTM的基本原理

  LSTM网络包括三个重要的门结构:遗忘门、输入门和输出门,它们共同决定了如何更新和保留网络的状态。具体来说,遗忘门控制保留多少旧信息,输入门决定加入多少新信息,而输出门决定下一状态的输出量。这种结构使LSTM特别适合处理和预测时间序列数据中的长期依赖关系。
在这里插入图片描述

二、多输出回归预测模型架构

  在多输出回归预测中,模型的目标是基于输入序列预测多个连续值。这种类型的模型在许多实际场景中非常有用,如天气预测、股价预测、资源需求预测等。一个典型的LSTM多输出回归模型包括:

输入层:接受原始时间序列数据。
LSTM层:一或多个LSTM层用于学习序列中的长期依赖关系。
输出层:一个全连接层(Dense),输出多个预测值。

三、示例代码

  假设我们的任务是基于过去一段时间的销售数据(如每日销量),预测未来几天的销量。以下是一个简单的实例代码,演示了如何使用28个特征预测3个输出,构建一个LSTM多输出回归模型。代码已跑通,只需修改几个参数和数据集即可,代码有详细注释,小白也可轻易看懂。
代码已上传至:https://www.kdocs.cn/l/cmQ0BXiurpbg

1.读入数据并划分数据集

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
dataset = xlsread('Dataset.xlsx');

%%  数据维度
Input_size = 28;
Output_size = 3;

%%  划分训练集和测试集
%matrix = 1:1:700;
matrix = randperm(718);
%rng(0);

Label_train = dataset(matrix(1: 575), 1 : 28)';
Target_train = dataset(matrix(1: 575), 29: 31)';
M = size(Label_train, 2);

Label_test = dataset(matrix(576: end), 1 : 28)';
Target_test = dataset(matrix(576: end), 29: 31)';
N = size(Label_test, 2);
...
...
...

2.运行结果

训练过程:
在这里插入图片描述

输出1:在这里插入图片描述
输出2:在这里插入图片描述

输出3:在这里插入图片描述

总结

  基于LSTM的多输入多输出的回归预测。代码已跑通,只需修改几个参数和数据集即可,代码有详细注释,小白也可轻易看懂。

  • 113
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一个基于LSTM的多输入双输出回归预测模型的MATLAB代码: ```matlab % Load data load data.mat % Define input data X = [input1, input2, input3]; % Define output data Y = [output1, output2]; % Normalize data Xnorm = normalize(X); Ynorm = normalize(Y); % Split data into training and testing sets trainRatio = 0.7; valRatio = 0.15; testRatio = 0.15; [trainInd,valInd,testInd] = dividerand(size(Xnorm,1),trainRatio,valRatio,testRatio); Xtrain = Xnorm(trainInd,:); Ytrain = Ynorm(trainInd,:); Xval = Xnorm(valInd,:); Yval = Ynorm(valInd,:); Xtest = Xnorm(testInd,:); Ytest = Ynorm(testInd,:); % Define LSTM network architecture numFeatures = size(X,2); numResponses = size(Y,2); numHiddenUnits = 200; layers = [ ... sequenceInputLayer(numFeatures) lstmLayer(numHiddenUnits,'OutputMode','sequence') dropoutLayer(0.2) lstmLayer(numHiddenUnits,'OutputMode','last') dropoutLayer(0.2) fullyConnectedLayer(numResponses) regressionLayer]; % Set training options maxEpochs = 100; miniBatchSize = 64; initialLearnRate = 0.001; options = trainingOptions('adam', ... 'MaxEpochs',maxEpochs, ... 'MiniBatchSize',miniBatchSize, ... 'InitialLearnRate',initialLearnRate, ... 'GradientThreshold',1, ... 'Shuffle','every-epoch', ... 'ValidationData',{Xval,Yval}, ... 'ValidationFrequency',30, ... 'Verbose',false, ... 'Plots','training-progress'); % Train LSTM network net = trainNetwork(Xtrain,Ytrain,layers,options); % Test LSTM network YPred = predict(net,Xtest); YPred = denormalize(YPred,Y); % Evaluate performance rmse = sqrt(mean((Ytest - YPred).^2)); r2 = 1 - sum((Ytest - YPred).^2)/sum((Ytest - mean(Ytest)).^2); disp(['RMSE: ', num2str(rmse)]) disp(['R2 score: ', num2str(r2)]) ``` 需要注意的是,上述代码需要配合一个名为`data.mat`的数据文件使用,其中包含了输入数据(`input1`、`input2`、`input3`)和输出数据(`output1`、`output2`)。另外,代码中涉及到了数据归一化和反归一化的操作,这是为了确保输入输出数据在相同的尺度上,从而提高模型的训练和预测效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值