直线的个数(set的应用)

本文介绍了一种使用C++实现的复杂图论算法案例,着重于如何通过自定义比较运算符来正确处理节点结构,并利用set容器存储不重复且有序的节点组合,通过计算不同点之间的线性关系,实现了特定几何问题的有效求解。

在这里插入图片描述
注意点在于set要重载所有元素

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<LL,LL>pii;
const int N=2e3+50;
vector<pii>G[N];
LL dis[N];
struct node{
    LL a,b,c;
    bool operator < (const node &t)const{
        if(t.a==a)
        {
            if(t.b==b)
            {
                return t.c<c;
            }
            return t.b<b;
        }
        return t.a<a;
    }
};
LL gcd(LL a,LL b)
{
    return b?gcd(b,a%b):a;
}
set<node>st;
void solve()
{
    int idx=0;
    for(int i=0;i<20;i++)
    {
        for(int j=0;j<21;j++)
        {
            for(int x=0;x<20;x++)
            {
                for(int y=0;y<21;y++)
                {
                    if(i!=x&&j!=y)
                    {
                        int a=j-y,b=x-i,c=i*y-x*j;
                        int t=gcd(gcd(a,b),c);
                        st.insert({a/t,b/t,c/t});
                        //cout<<st.size()<<endl;
                        //cout<<i<<" "<<j<<" "<<x<<" "<<y<<" "<<a/t<<" "<<b/t<<" "<<c/t<<endl;
                    }
                }
            }
        }
    }
    printf("%d",st.size()+41);
}
int main()
{
    int t=1;
    //scanf("%d",&t);
    while(t--)
    {
        solve();
    }
}
1. 线拟合 1.1 直线卡尺 本小结以计算两条边缘的夹角为例,介绍直线卡尺功能。 1. 图像读取+获取图像尺寸 ​ dev_update_off () dev_close_window () read_image (Image, 'C:/Users/Admin/Desktop/图像/测量测试图.jpg') dev_open_window_fit_image (Image, 500, 500, -1, -1, WindowHandle) set_display_font (WindowHandle, 16, 'mono', 'true', 'false') dev_display (Image) get_image_size (Image, Width, Height) ​ AI写代码 bash 2. 创建模型 * 创建测量模型的数据结构 create_metrology_model (MetrologyHandle) * 提前设置图像大小,以加快 图像大小,以加快首次调用 apply_metrology_model 的速度。 set_metrology_model_image_size (MetrologyHandle, Width, Height) AI写代码 bash 3.定义线测量对象的参数 * 定义计量线对象的参数 LineRow1 := [307,294] LineColumn1 := [20,56] LineRow2 := [297,293] LineColumn2 := [40,508] Tolerance := 20 AI写代码 bash 4.创建直线测量模型,并设置参数 * 创建2个直线测量模型,并设置参数 add_metrology_object_line_measure (MetrologyHandle, LineRow1, LineColumn1, LineRow2, LineColumn2, 30, 3, 1, 50, [], [], Index1) * 设置检测框的个数(20个) set_metrology_object_param (MetrologyHandle, 'all', 'num_measures', 20) AI写代码 bash 5.将测量模型应用到图像+输出结果 * 将模型应用到图像中 apply_metrology_model (Image, MetrologyHandle) * 获取结果 get_metrology_object_result (MetrologyHandle, 'all', 'all', 'result_type', 'all_param', LineParameter) AI写代码 bash 6.测量2条直线之间的角度 * 测量两条直线的角度 angle_ll (LineParameter[0], LineParameter[1], LineParameter[2], LineParameter[3], LineParameter[4], LineParameter[5], LineParameter[6], LineParameter[7], Angle) Angle := deg(Angle) AI写代码 bash 7.创建直线图形 * 创建直线图形 get_metrology_object_result_contour (ResultContour, MetrologyHandle, 'all', 'all', 1.5) intersection_lines (LineParameter[0], LineParameter[1], LineParameter[2], LineParameter[3], LineParameter[4], LineParameter[5], LineParameter[6], LineParameter[7], Row, Column, IsOverlapping1) AI写代码 bash 8. 计算两条直线的走向 * 计算两条直线的走向 line_orientation (LineParameter[0], LineParameter[1], LineParameter[2], LineParameter[3], Orientation1) if (Orientation1 > 0) Orientation1 := Orientation1 - rad(180) endif line_orientation (LineParameter[4], LineParameter[5], LineParameter[6], LineParameter[7], Orientation2) AI写代码 bash 9.可视化 * * 可视化直线夹角 gen_circle_contour_xld (ContCircle, Row, Column, 10, Orientation1, Orientation2, 'positive', 1) * 获取用于可视化的测量区域和测量点 get_metrology_object_measures (Contour, MetrologyHandle, 'all', 'all', MRow, MColumn) gen_cross_contour_xld (Cross, MRow, MColumn, 6, rad(45)) * Display everything dev_display (Image) dev_set_line_width (1) dev_set_color ('yellow') dev_display (Contour) dev_display (Cross) dev_set_line_width (2) dev_set_color ('green') dev_display (ResultContour) dev_set_color ('blue') dev_display (ContCircle) AI写代码 bash 结果图: 总结: 通过调节直线卡尺的各项参数(检测框区域起点终点,检测框宽高及数量,检测阈值灯)功能实现,两条边缘的角度测量。 完整代码: * 直线卡尺实例 dev_update_off () dev_close_window () read_image (Image, 'C:/Users/Admin/Desktop/图像/测量测试图.jpg') dev_open_window_fit_image (Image, 500, 500, -1, -1, WindowHandle) set_display_font (WindowHandle, 16, 'mono', 'true', 'false') dev_display (Image) get_image_size (Image, Width, Height) * * 创建测量模型的数据结构 create_metrology_model (MetrologyHandle) * 提前设置图像大小,以加快 图像大小,以加快首次调用 apply_metrology_model 的速度。 set_metrology_model_image_size (MetrologyHandle, Width, Height) * 定义计量线对象的参数 LineRow1 := [307,294] LineColumn1 := [20,56] LineRow2 := [297,293] LineColumn2 := [40,508] Tolerance := 20 * * 创建2个直线测量模型,并设置参数 add_metrology_object_line_measure (MetrologyHandle, LineRow1, LineColumn1, LineRow2, LineColumn2, 10, 3, 1, 10, [], [], Index1) * 设置检测框的个数(20个) * set_metrology_object_param (MetrologyHandle, 'all', 'num_measures', 20) * 将模型应用到图像中 apply_metrology_model (Image, MetrologyHandle) * 获取结果 get_metrology_object_result (MetrologyHandle, 'all', 'all', 'result_type', 'all_param', LineParameter) * 测量两条直线的角度 angle_ll (LineParameter[0], LineParameter[1], LineParameter[2], LineParameter[3], LineParameter[4], LineParameter[5], LineParameter[6], LineParameter[7], Angle) Angle := deg(Angle) * 创建直线图形 get_metrology_object_result_contour (ResultContour, MetrologyHandle, 'all', 'all', 1.5) intersection_lines (LineParameter[0], LineParameter[1], LineParameter[2], LineParameter[3], LineParameter[4], LineParameter[5], LineParameter[6], LineParameter[7], Row, Column, IsOverlapping1) * 计算两条直线的走向 line_orientation (LineParameter[0], LineParameter[1], LineParameter[2], LineParameter[3], Orientation1) if (Orientation1 > 0) Orientation1 := Orientation1 - rad(180) endif line_orientation (LineParameter[4], LineParameter[5], LineParameter[6], LineParameter[7], Orientation2) * * 可视化直线夹角 gen_circle_contour_xld (ContCircle, Row, Column, 10, Orientation1, Orientation2, 'positive', 1) * 获取用于可视化的测量区域和测量点 get_metrology_object_measures (Contour, MetrologyHandle, 'all', 'all', MRow, MColumn) gen_cross_contour_xld (Cross, MRow, MColumn, 6, rad(45)) * Display everything dev_display (Image) dev_set_line_width (1) dev_set_color ('yellow') dev_display (Contour) dev_display (Cross) dev_set_line_width (2) dev_set_color ('green') dev_display (ResultContour) dev_set_color ('blue') dev_display (ContCircle) disp_message (WindowHandle, 'Angle = ' + Angle$'.5' + '°', 'window', 12, 12, 'black', 'true') AI写代码 bash 2. 圆拟合 2.1 图像读取,创建显示窗体 清空窗体后,根据图像大小重新打开窗体,将其显示在屏幕的(500,500)位置上,并显示图像。 * 圆拟合实例 dev_update_off () dev_close_window () read_image (Image, 'C:/Users/Admin/Desktop/图像/测试图7.bmp') dev_open_window_fit_image (Image, 500, 500, -1, -1, WindowHandle) set_display_font (WindowHandle, 16, 'mono', 'true', 'false') dev_display (Image) AI写代码 bash 2.2 圆拟合参数设置 在创建圆拟合卡尺工具前,需要对参数进行设置。这里需要重点强调的几个参数包括: 小圆卡尺和大圆卡尺:大家看到这里会比较疑惑,为什么要设置两个圆。其实这里的目的是为了通过大圆和小圆的半径差来设置矩形检测区域的高度。我这样做是为了对接C#程序的UI交互页面。其实直接设置它的高度,也能达到同样的效果。 最小匹配分数:值越小,模型的容差越大,反之相反。简单的说,值小的时候,模型会尽可能匹配出圆,而舍弃一部分准确性。当值大的时候,模型的准确性就会较高,对应的图像必须得是相对较为规整的圆形。 极性:极性方向从圆心出发,沿着半径发散。 拟合点选择:拟合点选择方向从圆心出发,沿半径发散。 拟合算法:默认选择“邻近算法”。其中“双三插值算法”精度最高,对应耗时也最久。 ** 参数设置 * 圆卡尺Row坐标 CircleMetrologyRow := 420 * 圆卡尺Col坐标 CircleMetrologyColumn := 1077 * 小圆卡尺半径 SmallCircleMetrologyRadius := 80 * 大圆卡尺半径 BigCircleMetrologyRadius := 120 * 检测框宽度 CircleMetrologyWidth := 5 * 检测框数量 CircleMetrologyAmount := 20 * Sigma MeasureSigma := 1 * Threshold(阈值) MeasureThreshold := 30 * 最小匹配值 MeasureMinScore:= 0.1 * 极性(positive:由黑到白; negative: 由白到黑; all:任意) MeasureTransition :='all' * 拟合点选择(first:第一个; last:最后一个; all:所有) MeasureSelect := 'all' * 拟合算法选择(nearest_neighbor:邻近算法; bilinear:双线插值算法; bicubic:双三次插值算法) FittingMethod :='nearest_neighbor' AI写代码 bash 2.3 圆拟合算法实现 2.3.1 图像格式转换 对于三通道或对通道的图像,需要对图像进行转换。统一转换为灰度图。(这一步也可以放在代码的开头,作为数据预处理) * 转换彩图至灰度图 count_channels (ImageOut, imgChannels) if(imgChannels != 1) rgb1_to_gray (ImageOut, ImageOut) endif * 转换real图至byte图 get_image_type (ImageOut, imgType) if(imgType == 'real') ChangeDepthImageToByteImage (ImageOut, ImageOut, 1, result) if(result != '') return() endif endif AI写代码 bash 2.3.2 构建圆检测模型 构建圆检测模型。需要注意的是,在构建圆检测模型前可以先获取一下图像尺寸,并将图像尺寸传给模型,从而提升模型的速度。 * 获取图像尺寸 get_image_size (ImageOut, Width, Height) * 准备测量模型数据结构 create_metrology_model (MetrologyHandle) * 设置图像大小从而提升第一次的运行速度 set_metrology_model_image_size (MetrologyHandle, Width, Height) * 添加圆形检测模型 add_metrology_object_circle_measure (MetrologyHandle, CircleMetrologyRow, CircleMetrologyColumn, CircleMetrologyRadius, CircleMetrologyHight, CircleMetrologyWidth, MeasureSigma, MeasureThreshold, [], [], MetrologyCircleIndices) AI写代码 bash 2.3.3 设置模型参数 在构建完检测模型后,需要将模型参数传入。下方的参数对应着2.2章节的参数。 * 设置圆形检测模型的参数 set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'num_measures', CircleMetrologyAmount) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'min_score', MeasureMinScore) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'measure_transition', MeasureTransition) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'measure_select', MeasureSelect) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'measure_interpolation', FittingMethod) AI写代码 bash 2.3.4 进行测量,获取结果 进行测量,测量结果会储存在“CircleParameter”中。按照顺序,第一位存了圆的Row坐标,第二位存了圆的Column坐标,第三位存了圆的半径。如果这个变量为空,说明检测失败。 * 进行测量 apply_metrology_model (ImageOut, MetrologyHandle) * 获取结果 get_metrology_object_result (MetrologyHandle, MetrologyCircleIndices, 'all', 'result_type', 'all_param', CircleParameter) if(|CircleParameter| != 0) CircleRow := CircleParameter[0] CircleColumn := CircleParameter[1] CircleRadius := CircleParameter[2] endif AI写代码 bash 2.3.5 创建可视化的图形 创建一些可视化的图像,从而便于观察检测结果。 * 获取测量对象的轮廓线 get_metrology_object_result_contour (CircleContour, MetrologyHandle, 'all', 'all', 1.5) * 获取测量轮廓线,以及拟合点坐标 get_metrology_object_measures (MetrologyContour, MetrologyHandle, 'all', 'all', PointRows, PointColumns) gen_cross_contour_xld (CrossContour, PointRows, PointColumns, 6, 0.785398) AI写代码 bash 2.3.6 可视化显示 dev_display (CircleContour) dev_display (MetrologyContour) dev_display (CrossContour) AI写代码 bash 2.4 效果展示 这边尝试拟合了一个扇形,将“最小分数”改小后的拟合效果。图中的小矩形就是检测框,检测框中的叉叉就是拟合出来的点。 2.5 完整代码展示 * 圆拟合实例 dev_update_off () dev_close_window () read_image (Image, 'C:/Users/Admin/Desktop/图像/测试图7.bmp') dev_open_window_fit_image (Image, 500, 500, -1, -1, WindowHandle) set_display_font (WindowHandle, 16, 'mono', 'true', 'false') dev_display (Image) ** 参数设置 * 圆卡尺Row坐标 CircleMetrologyRow := 420 * 圆卡尺Col坐标 CircleMetrologyColumn := 1077 * 小圆卡尺半径 SmallCircleMetrologyRadius := 80 * 大圆卡尺半径 BigCircleMetrologyRadius := 120 * 检测框宽度 CircleMetrologyWidth := 5 * 检测框数量 CircleMetrologyAmount := 20 * Sigma MeasureSigma := 1 * Threshold(阈值) MeasureThreshold := 30 * 最小匹配值 MeasureMinScore:= 0.1 * 极性(positive:由黑到白; negative: 由白到黑; all:任意) MeasureTransition :='all' * 拟合点选择(first:第一个; last:最后一个; all:所有) MeasureSelect := 'all' * 拟合算法选择(nearest_neighbor:邻近算法; bilinear:双线插值算法; bicubic:双三次插值算法) FittingMethod :='nearest_neighbor' ** 圆拟合函数 FittingCircle (Image, CircleContour, MetrologyContour, CrossContour, CircleMetrologyRow, CircleMetrologyColumn, SmallCircleMetrologyRadius, BigCircleMetrologyRadius, CircleMetrologyWidth, CircleMetrologyAmount, MeasureSigma, MeasureThreshold, MeasureMinScore, MeasureTransition, MeasureSelect, FittingMethod, CircleRow, CircleColumn, CircleRadius) ** 可视化 dev_display (CircleContour) dev_display (MetrologyContour) dev_display (CrossContour) AI写代码 bash 其中“圆拟合函数”代码如下: ImageOut := Image CircleMetrologyRadius := (BigCircleMetrologyRadius+SmallCircleMetrologyRadius)/2 CircleMetrologyHight :=(BigCircleMetrologyRadius-SmallCircleMetrologyRadius)/2 * 转换彩图至灰度图 count_channels (ImageOut, imgChannels) if(imgChannels != 1) rgb1_to_gray (ImageOut, ImageOut) endif * 转换real图至byte图 get_image_type (ImageOut, imgType) if(imgType == 'real') ChangeDepthImageToByteImage (ImageOut, ImageOut, 1, result) if(result != '') return() endif endif * 获取图像尺寸 get_image_size (ImageOut, Width, Height) * 准备测量模型数据结构 create_metrology_model (MetrologyHandle) * 设置图像大小从而提升第一次的运行速度 set_metrology_model_image_size (MetrologyHandle, Width, Height) * 添加圆形检测模型 add_metrology_object_circle_measure (MetrologyHandle, CircleMetrologyRow, CircleMetrologyColumn, CircleMetrologyRadius, CircleMetrologyHight, CircleMetrologyWidth, MeasureSigma, MeasureThreshold, [], [], MetrologyCircleIndices) * 设置圆形检测模型的参数 set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'num_measures', CircleMetrologyAmount) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'min_score', MeasureMinScore) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'measure_transition', MeasureTransition) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'measure_select', MeasureSelect) set_metrology_object_param (MetrologyHandle, MetrologyCircleIndices, 'measure_interpolation', FittingMethod) * 进行测量 apply_metrology_model (ImageOut, MetrologyHandle) * 获取结果 get_metrology_object_result (MetrologyHandle, MetrologyCircleIndices, 'all', 'result_type', 'all_param', CircleParameter) if(|CircleParameter| != 0) CircleRow := CircleParameter[0] CircleColumn := CircleParameter[1] CircleRadius := CircleParameter[2] endif * 获取测量对象的轮廓线 get_metrology_object_result_contour (CircleContour, MetrologyHandle, 'all', 'all', 1.5) * 获取测量轮廓线,以及拟合点坐标 get_metrology_object_measures (MetrologyContour, MetrologyHandle, 'all', 'all', PointRows, PointColumns) gen_cross_contour_xld (CrossContour, PointRows, PointColumns, 6, 0.785398) return () AI写代码 bash 参考此文章进行直线和圆的拟合
09-07
<think>好的,我现在需要帮助用户解决如何使用OpenMV统计特定阈值内像素点个数的问题。用户之前提到了霍夫变换直线检测,现在转向OpenMV的像素统计,可能需要结合之前的图像处理知识。 首先,用户的需求是统计特定阈值内的像素点数量。根据用户提供的引用,特别是引用[1]和引用[2],里面提到了使用OpenMV的统计方法和图像矩阵的分析。引用[1]中的statistics.mode()可能可以用来获取灰度众数,而引用[2]提到OpenCV的统计函数,但用户现在使用OpenMV,所以需要找对应的OpenMV方法。 接下来,我需要回忆OpenMV的相关函数。OpenMV的image模块可能有统计功能,比如get_statistics()。用户可能需要先定义阈值范围,然后统计在这个范围内的像素数量。可能步骤包括:捕获图像,转换为灰度,定义阈值,然后遍历像素或使用内置函数统计。 用户可能对性能有要求,尤其是在实时处理中,所以需要考虑高效的统计方法,避免逐像素检查。引用[3]提到设置像素的方法,但这里需要统计,所以可能需要使用get_statistics()来获取最大值、最小值、均值等,但如何统计特定区间呢?或者是否有类似OpenCV的inRange函数? 另外,用户之前的问题涉及霍夫变换的参数调整,可能现在需要类似的参数设置,比如阈值范围的选择。引用[1]中的自适应阈值方法可能相关,用户可能需要动态调整阈值,而不仅仅是固定值。 可能的解决方案是使用OpenMV的image.find_blobs()函数,通过设定阈值参数来找到符合条件的区域,然后统计这些区域的像素数量。或者使用get_statistics()结合循环遍历,但效率可能较低。 需要验证OpenMV的API文档,查看是否有直接统计阈值内像素的方法。例如,image.get_histogram()可能提供直方图数据,然后累计特定区间的数量。或者使用image.binary()创建二值图像,然后统计非零像素的数量。 另外,用户可能需要代码示例,类似之前霍夫变换的实现,所以应提供具体的OpenMV代码步骤,包括图像捕获、转换、阈值设置、统计方法,并解释关键参数。 最后,确保回答结构清晰,分步骤说明,并给出优化建议,如使用ROI区域减少计算量,或者调整阈值参数以提高效率。可能还需要提醒用户注意性能问题,尤其是在处理大图像时。</think>#### OpenMV阈值内像素统计实现指南 通过分析图像像素数据实现阈值统计,OpenMV提供两种核心方法:**直方图统计法**和**二值化区域统计法**。以下为详细实现流程: --- ### 一、直方图统计法(推荐) 适用于需要精确统计多个阈值区间的情况,时间复杂度$O(1)$ ```python import sensor, image, time sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) # 灰度模式提升处理速度 sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time=2000) # 等待感光元件稳定 threshold_range = (100, 200) # 定义统计的灰度阈值区间 while True: img = sensor.snapshot() hist = img.get_histogram() # 获取整幅图像直方图 # 统计指定阈值区间内的像素数量 count = hist.get_percentile(threshold_range[1]).value() - \ hist.get_percentile(threshold_range[0]).value() print("Threshold Area Pixels:", count) ``` **关键参数说明**: - `get_histogram()`:返回包含256个灰度级的统计直方图[^2] - `get_percentile()`:计算累积分布函数,快速定位阈值边界 --- ### 二、二值化区域统计法 适用于需要同时获取空间分布信息的场景 ```python import sensor, image, time sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) thresholds = [(100, 200)] # 灰度阈值范围列表 roi = (50,50,100,100) # 指定统计区域(可选) while True: img = sensor.snapshot() # 创建二值化图像 binary = img.binary(thresholds, invert=False, zero=True) # 统计非零像素数量 stats = binary.get_statistics(roi=roi) print("Target Pixels:", stats[4]) # stats[4]对应非零像素数 ``` **核心函数解析**: - `binary()`:生成仅保留阈值内像素的二值图像[^3] - `get_statistics()`:返回包含像素数、均值等统计信息的元组 --- ### 三、性能优化技巧 | 方法 | 优化效果 | 适用场景 | |---------------------|----------------------------|----------------------| | 设置ROI区域 | 减少80%以上计算量 | 固定目标检测区域 | | 降低图像分辨率 | 减少75%像素处理量 | 实时性要求高的场景 | | 使用灰度模式 | 提速3-5倍 | 不需要彩色信息时 | | 预先设置感光参数 | 减少动态调整带来的延迟 | 固定光照环境 | --- ### 四、进阶应用示例 **动态阈值自适应统计**(结合引用[1]的众数统计法) ```python # 获取ROI区域的灰度众数 roi = (100,100,50,50) stat = img.get_statistics(roi=roi) mode_value = stat.mode() # 获取出现频率最高的灰度值[^1] # 以众数为中心设置动态阈值 dynamic_threshold = (max(0, mode_value-30), min(255, mode_value+30)) print("Dynamic Threshold:", dynamic_threshold) ``` ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值