- 掌握单位根检验的原理并能解读结果;
- 掌握利用序列的自相关图和偏自相关图识别模型并进行初步定阶。
原始数据在文末!!!
练习1、根据某1971年9月-1993年6月澳大利亚季度常住人口变动(单位:千人)的数据(行数据)(题目1数据.txt),求:
(1)通过时序图、样本自相关图、单位根检验,判断该序列的平稳性;
(2)判断该序列的纯随机性;
(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。
data1 <- scan("F:/时间序列分析/实验5/习题数据/题目1数据.txt")
x1 <- ts(data1,start = c(1971,3),frequency = 4)
plot(x1)#时序图
acf(x1)#自相关图
install.packages("aTSA")
library(aTSA)
adf.test(x1)#单位根检验
for(i in 1:2)print(Box.test(x1,type = "Ljung-Box",lag = 6*1))#白噪声检验
pacf(x1)#偏自相关图
结果分析:
- 时序图:
该序列始终在常数50附近波动,且波动范围有界。无明显的趋势性或周期性。该序列是平稳序列。
自相关图:
显示除了lag=0.75和lag=2的自相关系数在2倍标准差范围之外,其他阶数的自相关系数都在2倍标准差范围内波动。可以判断该序列具有短期相关性,进一步确定序列平稳。
单位根检验:
检验结果显示该序列可认为是平稳序列(带漂移项1-2阶滞后模型和既有漂移项又有趋势项的1-2阶滞后模型的P值小于0.05)。
adf.test(x1)
Augmented Dickey-Fuller Test
alternative: stationary
Type 1: no drift no trend
lag ADF p.value
[1,] 0 -2.719 0.010
[2,] 1 -1.531 0.128
[3,] 2 -0.928 0.345
[4,] 3 -0.698 0.428
Type 2: with drift no trend
lag ADF p.value
[1,] 0 -10.12 0.010