时间序列分析 # 平稳性检验和ARMA模型的识别与定阶 #R语言

文章详细介绍了如何通过时序图、自相关图和偏自相关图,结合单位根检验和白噪声检验来判断时间序列的平稳性和选择合适的ARIMA模型。实例涵盖了澳大利亚人口变动、城市人口净流入和夏威夷火山CO2排放数据的分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 掌握单位根检验的原理并能解读结果;
  2. 掌握利用序列的自相关图和偏自相关图识别模型并进行初步定阶。

原始数据在文末!!!

练习1、根据某1971年9月-1993年6月澳大利亚季度常住人口变动(单位:千人)的数据(行数据)(题目1数据.txt),求:

(1)通过时序图、样本自相关图、单位根检验,判断该序列的平稳性;

(2)判断该序列的纯随机性;

(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。

data1 <- scan("F:/时间序列分析/实验5/习题数据/题目1数据.txt")
x1 <- ts(data1,start = c(1971,3),frequency = 4)
plot(x1)#时序图
acf(x1)#自相关图
install.packages("aTSA")
library(aTSA)
adf.test(x1)#单位根检验

for(i in 1:2)print(Box.test(x1,type = "Ljung-Box",lag = 6*1))#白噪声检验
pacf(x1)#偏自相关图

结果分析:

  1. 时序图:

该序列始终在常数50附近波动,且波动范围有界。无明显的趋势性或周期性。该序列是平稳序列。

自相关图:

显示除了lag=0.75和lag=2的自相关系数在2倍标准差范围之外,其他阶数的自相关系数都在2倍标准差范围内波动。可以判断该序列具有短期相关性,进一步确定序列平稳。

单位根检验:

检验结果显示该序列可认为是平稳序列(带漂移项1-2阶滞后模型和既有漂移项又有趋势项的1-2阶滞后模型的P值小于0.05)。

adf.test(x1)

Augmented Dickey-Fuller Test

alternative: stationary

Type 1: no drift no trend

     lag    ADF p.value

[1,]   0 -2.719   0.010

[2,]   1 -1.531   0.128

[3,]   2 -0.928   0.345

[4,]   3 -0.698   0.428

Type 2: with drift no trend

     lag    ADF p.value

[1,]   0 -10.12   0.010

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值