数值分析期末复习

第一章 科学计算

误差

解题步骤

x : 真实值 x:真实值 x:真实值 x ∗ : 近似值 x^*:近似值 x:近似值

  1. 先求绝对误差 e ∗ e^* e:
    x − x ∗ x - x^* xx

绝对误差限是 ∣ x − x ∗ ∣ ≤ ε |x - x^{*}| \le \varepsilon xxε

  1. 求相对误差限:
    ∣ x    −    x ∗ ∣ x ∗ \frac{|x\,\,-\,\,x^*|}{x^*} xxx
  2. 求有效数字
    1. 先计算 m
    2. 将绝对误差小于这一个数的半个单位,右上角的阶数为 m-n
    3. 通过计算得出 n 的值就是有效数字
      image.png

举个例子:
相减得出结果为0.0000345则小于0.0005,则有效数字为4

例题1:
image.png

第二章 线性代数直接法

高斯消去法

高斯顺序消去法解题步骤

(假设是一个三行三列的矩阵):

  1. 先用第一行消去2,3行
  2. 再用第二行消去第三行

例题1:
987c473889804cafbae9f9f1718c044.jpg
例题2:
cc0434961ba0e72df953fa4ee6a96c4.jpg

高斯列主元消去法解题步骤

  1. 比较哪一行的绝对值最大,然后交换
  2. 用第一行消去第2、3行
  3. 再次比较哪一行绝对值最大,交换
  4. 重复步骤

例题1:
52e744960581f51f8b2ce30cd385017.jpg
例题2:
2579dce62a578c83fc05cc25928d28a.jpg
a661f62d416d4d48b9a94a9df97078d.jpg

LU分解

LU分解又称为:杜利特尔 (Doolittle)分解法,直接三角分解法

解题步骤

  1. 将A矩阵分解成L、U矩阵
    1. L矩阵:下三角矩阵,对角线全为1,其他元素为x
    2. U矩阵:上三角矩阵,第一行元素和A矩阵相同,其他元素为x
  2. 从A中矩阵逆向推导,L、U剩下的元素逐一相乘得出结果
    1. 按照顺序一行一行的元素去算

例题1:
2e32d42f8f43c0ae85d2720b61fbba7.jpg

3915868f5273582e7f11b0177bac7c8.jpg
31b5216620ff5a2f33ec9ef7ec72958.jpg

追赶法

追赶法又称为:克劳特分解

公式:
A = [ 1 2 3 4 5 6 7 8 9 ] = [ α 1 0 0 1 α 2 0 0 1 α 3 ] ∗ [ 1 β 1 0 0 1 β 2 0 0 1 ] A = \begin{bmatrix} 1 & 2&3 \\ 4& 5 &6 \\ 7&8 &9 \end{bmatrix} =\begin{bmatrix} \alpha _1 & 0 &0 \\ 1& \alpha_2 &0 \\ 0 & 1&\alpha_3 \end{bmatrix} * \begin{bmatrix} 1 & \beta _1 & 0\\ 0&1 & \beta_2\\ 0& 0 &1 \end{bmatrix} A= 147258369 = α1100α2100α3 100β1100β21

解题步骤

  1. 将A矩阵分解为L、U矩阵
  2. L矩阵的特点:下三角矩阵,对角线为未知数 α \alpha α,其他元素对A照抄
  3. U矩阵的特点:上三角矩阵,对角线为1,对角线上面的元素为 β \beta β
  4. α , β \alpha,\beta α,β全部算出来
  5. L y = b Ly=b Ly=b -> U x = y Ux=y Ux=y

例题:
899fe9ec4c43c1e320cf522730c939e.jpg
212cd76b186e8a5d88ad977e8fb26bf.jpg
84492d380115456b36a99289cdba506.jpg

第三章 线性代数方程组的迭代法

范数和条件数

  1. 1范数(列范数):每一列元素的绝对值之和的最大值 ∣ ∣ A ∣ ∣ 1 ||A||_1 ∣∣A1
  2. 无穷范数(行范数):每一行元素的绝对值之和的最大值
  3. 2范数:
    1. 向量:向量元素平方的和的平方根
    2. 矩阵(又称为谱范数):null
  4. 无穷范数条件数:
    c o n d ∞ ( A )    =    ∣ ∣ A ∣ ∣ ∞ ∣ ∣ A − 1 ∣ ∣ ∞ cond_{\infty}\left( A \right) \,\,=\,\,||A||_{\infty}||A^{-1}||_{\infty} cond(A)=∣∣A∣∣A1
  5. F 范数:矩阵所有元素的平方之和开根号
    例题1:
    f690ea10aedc5224444911545e27b35.jpg
    例题2:
    32ddcfdd090dda264110dcbf51eabc5.jpg

A − 1 A^{-1} A1的方法

  1. 初等变换法
    image.png

雅可比迭代法

解题步骤

  1. 整体思路:将 Ax=b ->x=Bx+g 的形式
  2. 先将第一行转换为 x 1 = . . . x_1=... x1=...
  3. 第二行 x 3 = . . . . x_{3}= .... x3=....
  4. 以此类推
  5. 画出表格
    image.png

计算器解题步骤

  1. 先将A、B、C、D、E、F设置为0 ( A 代表 x 1 , B 代表 x 2 , C 代表 x 3 A代表x_1,B代表x_2,C代表x_3 A代表x1,B代表x2,C代表x3)
    1. 0 sto A
    2. 0 sto B
    3. 0 sto C
    4. 0 sto D
    5. 0 sto E
    6. 0 sto F
  2. 将每一行公式输入到计算器中,使用 : : :进行分割
    1. D = …:E = …:F = …:A=D:B=E:C=F
      1. 这里是因为一开始不迭代,所以要设置DEF

高斯迭代法

解题步骤

  1. 与雅可比迭代类似
  2. 但是每次都会迭代前面那个值

计算器解题步骤

  1. 先将A、B、C设置为0 ( A 代表 x 1 , B 代表 x 2 , C 代表 x 3 A代表x_1,B代表x_2,C代表x_3 A代表x1,B代表x2,C代表x3)
    1. 0 sto A
    2. 0 sto B
    3. 0 sto C
  2. 将每一行公式输入到计算器中,使用 : : :进行分割
    1. A = …:B = …:C = …

雅可比、高斯敛散性

1. 是否严格对角占优

严格对角占优:每一个对角元素的绝对值都大于它这一行的非对角元素绝对值之和,就是严格对角占优

2. 判断谱半径是否小于 1

  • 计算 A 矩阵的L、D、U
    A:
    image.png
    L: 下三角矩阵 L 包含 A 对角线以下的元素,其余位置为 0 (包括对角线)。 下三角矩阵 L 包含 A 对角线以下的元素,其余位置为0(包括对角线)。 下三角矩阵L包含A对角线以下的元素,其余位置为0(包括对角线)。
    image.png
    D: 对角矩阵 D 仅包含 A 的对角线元素,其余位置为 0 。 D − 1 是 D 每个元素的倒数 对角矩阵 D 仅包含 A 的对角线元素,其余位置为0。D^{-1}是D 每个元素的倒数 对角矩阵D仅包含A的对角线元素,其余位置为0D1D每个元素的倒数
    image.png
    U: 上三角矩阵 U 包含 A 对角线以上的元素,其余位置为 0 (包括对角线)。 上三角矩阵 U 包含 A 对角线以上的元素,其余位置为0(包括对角线)。 上三角矩阵U包含A对角线以上的元素,其余位置为0(包括对角线)。
    image.png
  • 计算迭代矩阵 T J = − D − 1 ( L + U ) 计算迭代矩阵 T_J=-D^{-1}(L+U) 计算迭代矩阵TJ=D1(L+U)
  • 计算出谱半径:特征值绝对值的最大值 如果小于1 则收敛否则不收敛

用计算器计算特征值

  • 特征值回顾:

    • image.png
  • 矩阵赋值 将 ANS 赋值给 B

    • image.png
  • ∣ A − λ E ∣ = 0 ,算出 λ 1 、 λ 2 、 λ 3 |A-\lambda E| = 0 , 算出 \lambda_{1} 、 \lambda_{2} 、\lambda_3 AλE=0,算出λ1λ2λ3

  • 再计算出 ( A − λ E ) = 0 (A-\lambda E) = 0 (AλE)=0

    • 化到最简 ( A − λ E ) (A-\lambda E) (AλE)

第四章 多项式插值和样条插值

基础知识

  1. 线性插值是 L 1 ( x ) L_1(x) L1(x)
  2. 抛物线插值是 L 2 ( x ) L_2(x) L2(x)

拉格朗日插值

一共 2 个部分:

  1. 插值多项式
  2. 插值余项

插值多项式

  • l n ( x ) = [ ∏ i = 0 , i ≠ j n x − x i x j − x i ] y i l_n(x) =[ \prod_{i=0,i\ne j}^{n}\frac{x-x_i}{x_j-xi}] y_i ln(x)=[i=0,i=jnxjxixxi]yi
  • L n ( x ) = ∑ j = 0 n L j ( x ) y j L_n(x)=\sum_{j=0}^{n}L_j(x)y_j Ln(x)=j=0nLj(x)yj

线性 n=1,以此类推后面就是 2 次、3 次

举例 L 2 ( x ) L_2(x) L2(x):
L 2 ( x ) = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) y 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) y 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) y 2 L_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 +\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} y_1 +\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2 L2(x)=(x0x1)(x0x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2

插值余项

  • ∣ R n ( x ) ∣ = M n + 1 ( n + 1 ) ! ∣ W n + 1 ( x ) ∣ |R_n(x)|=\frac{M_{n+1}}{(n+1)!} |W_{n+1}(x)| Rn(x)=(n+1)!Mn+1Wn+1(x)
  • M n + 1 = max ⁡ a ≤ x ≤ b ∣ f n + 1 ( x ) ∣ M_{n+1} = \max_{a\le x\le b}|f^{n+1}(x)| Mn+1=maxaxbfn+1(x)
  • W n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) W_{n+1}(x) = (x-x_0)(x-x_1)...(x-x_n) Wn+1(x)=(xx0)(xx1)...(xxn)

牛顿插值

插值多项式

  • f ( x 0 , . . . , x n ) = f n − f n − 1 x n − x 0 f(x_0,...,x_n) = \frac{f_n - f_{n-1}}{x_n-x_0} f(x0,...,xn)=xnx0fnfn1

解题步骤

  1. 列差商表
kxf(x)一阶差商
x 0 x_0 x01 f 0 f_0 f0
x 1 x_1 x12 f 1 f_1 f1 f ( x 0 , x 1 ) f(x_0,x_1) f(x0,x1)

以此类推,有 n 个 x 的值就有多少次 n-1 阶差商

  1. 最后的结果公式
    N n ( x ) = f 0 + f ( x 0 , x 1 ) ( x − x 0 ) + . . . + f ( x 0 , . . . , x n + 1 ) ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) N_{n}(x)=f_0 + f(x_0,x_1)(x-x_0) +...+f(x_0,...,x_{n+1})(x-x_0)(x-x_1)...(x-x_n) Nn(x)=f0+f(x0,x1)(xx0)+...+f(x0,...,xn+1)(xx0)(xx1)...(xxn)

牛顿插值余项

需要补充

第五章 函数逼近

最佳平方逼近

解题步骤

  1. 一般题目会给多项式,将其改写为 y = a + b x + c x 2 + d x 3 + . . . y = a + bx + cx^{2}+ dx^{3}+ ... y=a+bx+cx2+dx3+...,还有区间 [ u , d ] [u,d] [u,d]
    • 如果是线性最佳平方逼近 多项式为 y = a + b x y= a+ bx y=a+bx
    • 这边 φ 0 = 1 \varphi_{0}= 1 φ0=1代表第一个未知数, φ 1 = 1 , φ 2 = x 2 , φ 3 = x 3 \varphi_{1}= 1,\varphi_{2}= x^{2} ,\varphi_{3}=x^3 φ1=1,φ2=x2,φ3=x3
  2. 列法方程
    • ( ( φ 0 , φ 0 ) ( φ 0 , φ 1 ) ( φ 0 , φ 2 ) ( φ 1 , φ 0 ) ( φ 1 , φ 1 ) ( φ 1 , φ 2 ) ( φ 2 , φ 0 ) ( φ 2 , φ 1 ) ( φ 2 , φ 2 ) ( a b c ) = ( ( f , φ 0 ) ( f , φ 1 ) ( f , φ 2 ) ) \begin{pmatrix}(\varphi_0,\varphi_0) & (\varphi_0,\varphi_1) & (\varphi_0,\varphi_2)\\ (\varphi_1,\varphi_0) & (\varphi_1,\varphi_1) & (\varphi_1,\varphi_2)\\ (\varphi_2,\varphi_0) & (\varphi_2,\varphi_1)&(\varphi_2,\varphi_2\end{pmatrix} \begin{pmatrix}a \\b \\c\end{pmatrix} = \begin{pmatrix}(f,\varphi_0) \\(f,\varphi_1) \\(f,\varphi_2)\end{pmatrix} φ0φ0φ1φ0φ2φ0φ0φ1φ1φ1φ2φ1φ0φ2φ1φ2φ2φ2 abc = (f,φ0)(f,φ1)(f,φ2)
    • 第一个位置以 φ 0 开始,后面每一行开头都自增,第二个位置从 φ 0 到 φ n 结束 第一个位置以\varphi_0开始,后面每一行开头都自增,第二个位置从\varphi_0到\varphi_n结束 第一个位置以φ0开始,后面每一行开头都自增,第二个位置从φ0φn结束
    • a,b,c 是多项式中的 a,b,c
    • f 为 y
  3. 计算
    • ( φ 0 , φ 0 ) (\varphi_0,\varphi_0) φ0φ0 => ∫ d u φ 0 ∗ φ 0 d x \int_{d}^{u} \varphi_0 * \varphi_0 dx duφ0φ0dx
    • ( f , φ 0 ) (f,\varphi_0) (f,φ0) => ∫ d u f ∗ φ 0 d x \int_{d}^{u} f* \varphi_0 dx dufφ0dx
    • 以此类推
  4. 算出方程后直接代入计算器解出 a,b,c 的值

最小二乘法

解题步骤

  1. 通常使用最小二乘法都会带有 x,y 的表格和一个多项式
  2. 化简多项式为: φ 0 = 1 , φ 1 = x , φ 2 = x 2 , φ 3 = x 3 和 a , b , c 的形式 \varphi_{0}= 1,\varphi_{1}= x,\varphi_{2}= x^{2} ,\varphi_{3}=x^{3}和 a,b,c 的形式 φ0=1,φ1=x,φ2=x2,φ3=x3a,b,c的形式
  3. 列法方程
  4. 计算前先举个例子:
    1. y = a + b x y=a + bx y=a+bx -> 这里 φ 0 = 1 , φ 1 = x \varphi_{0}= 1,\varphi_{1} = x φ0=1,φ1=x
      x有 3 个,那么 φ 0 = [ 1 1 1 ] \varphi_{0}= \begin{bmatrix} 1\\1 \\1\end{bmatrix} φ0= 111 ,将 x 代入, φ 1 = [ − 3 − 2 − 1 ] \varphi_{1}= \begin{bmatrix} -3\\-2 \\-1\end{bmatrix} φ1= 321
      image.png

      如果有 φ 2 = x 2 \varphi_{2} = x^2 φ2=x2的话,那么 φ 2 = [ ( − 3 ) 2 = 9 ( − 2 ) 2 = 4 ( − 1 ) 2 = 1 ] \varphi_{2} = \begin{bmatrix} (-3)^2 = 9\\(-2) ^ 2 =4 \\ (-1)^2 = 1\end{bmatrix} φ2= (3)2=9(2)2=4(1)2=1

    2. 建立法方程:
      image.png

      • ( φ 0 , φ 0 ) (\varphi_0,\varphi_0) φ0φ0

        • x 个 1 组成的向量内积和 x 个 1 组成的向量内积和 x1组成的向量内积和
          • [ 1 1 1 ] ∗ [ 1 1 1 ] = 1 + 1 + 1 = 3 \begin{bmatrix}1 \\1 \\1\end{bmatrix} * \begin{bmatrix}1 \\1 \\1\end{bmatrix} =1 + 1 + 1 =3 111 111 =1+1+1=3
      • ( φ 0 , φ 1 ) (\varphi_0,\varphi_1) φ0φ1 = ( φ 1 , φ 0 ) (\varphi_1,\varphi_0) φ1φ0 = [ 1 1 1 ] ∗ [ − 3 − 2 − 1 ] = − 3 + ( − 2 ) + ( − 1 ) = − 6 \begin{bmatrix} 1\\1 \\1\end{bmatrix} * \begin{bmatrix} -3\\-2 \\-1\end{bmatrix} = -3 + (-2) + (-1) = -6 111 321 =3+2+1=6

      • ( φ 1 , φ 1 ) (\varphi_1,\varphi_1) φ1φ1 = [ − 3 − 2 − 1 ] ∗ [ − 3 − 2 − 1 ] = 9 + 4 + 1 = 14 \begin{bmatrix} -3\\-2 \\-1\end{bmatrix} * \begin{bmatrix} -3\\-2 \\-1\end{bmatrix} = 9 + 4 + 1 = 14 321 321 =9+4+1=14

      • ( f , φ 1 ) = [ − 3.2 − 2.1 − 1.2 ] ∗ [ − 3 − 2 − 1 ] = ( − 3 ∗ ( − 3.2 )) + ( − 2.1 ∗ ( − 2 )) + ( − 1.2 + ( − 1 )) = 15 (f,\varphi_1) = \begin{bmatrix} -3.2\\-2.1 \\-1.2\end{bmatrix} * \begin{bmatrix}-3 \\-2 \\-1\end{bmatrix} = (-3*(-3.2)) + (-2.1 * (-2)) + (-1.2 + (-1))=15 fφ1= 3.22.11.2 321 =33.2))+2.12))+1.2+1))=15

  5. 将值代入矩阵,通过计算器得出结果,将 a , b a,b a,b 结果代入 y = a + b x y=a + bx y=a+bx 得到最小二乘拟合函数

第六章 数值积分

尽可能高的代数精度

解题步骤

一般题目会给一个积分 ≈ \approx 一个多项式

  1. 将f(x) 分别计算 1 , x , x 2 , x 3 . . . 1,x,x^2,x^3... 1,x,x2,x3...,取决于多项式中未知数的个数

  2. 计算出来的值和多项式进行匹配,联立一个方程

  3. 通过计算器得出结果

  4. 计算R(f),一般从计算过的x次方的后一个开始计算

    1. R(f) = 积分 - 多项式
      1. 如果不等于0 那么精度为次方数m-1
      2. 等于0 继续算下一个次方
        09385c97f133008c87ca6793a742623.jpg

288dc2372709b5cf6e13dc98770208c.jpg
d2776820301ddb2a342e7ce6bf065ac.jpg

复合梯形公式

解题步骤

  1. h = b − a n , n = a , b 区间等分数 h=\frac{b-a}{n},n=a,b\text{区间等分数} h=nba,n=a,b区间等分数

  2. 把所有x的值列出来

  3. 带入公式
    ∫ a b f ( x ) d x ≈ h 2 [ f ( a ) + f ( b ) + 2 ∑ k = 1 n − 1 f ( x k ) ] \int_a^b{f\left( x \right) dx\approx \frac{h}{2}\left[ f\left( a \right) +f\left( b \right) +2\sum_{k=1}^{n-1}{f\left( x_k \right)} \right]} abf(x)dx2h[f(a)+f(b)+2k=1n1f(xk)]

  4. 计算 ∑ k = 1 n − 1 f ( x k ) \sum_{k=1}^{n-1}{f\left( x_k \right)} k=1n1f(xk)

    1. 先得出x的值,举例:b1d86033fbf068e58e619187d89be81.jpg
    2. 带入f函数得出y的值,然后相加

例题

00350b6d219618b5bcd924a0372d649.jpg

复合辛普森公式

解题步骤

  1. 前面计算h,n是一样的
  2. 把所有的x的值列出来
  3. 计算
    x k + 1 2 = x k + h 2 x_{k+\frac{1}{2}}=x_k+\frac{h}{2} xk+21=xk+2h
  4. 计算公式得出结果:
    ∫ a b f ( x ) d x ≈ h 6 [ f ( a ) + f ( b ) + 4 ∑ k = 0 n − 1 f ( x k + 1 2 ) + 2 ∑ k = 1 n − 1 f ( x k ) ] \int_a^b{f\left( x \right) dx\approx \frac{h}{6}\left[ f\left( a \right) +f\left( b \right) +4\sum_{k=0}^{n-1}{f\left( x_{k+\frac{1}{2}} \right) +2\sum_{k=1}^{n-1}{f\left( x_k \right)}} \right]} abf(x)dx6h[f(a)+f(b)+4k=0n1f(xk+21)+2k=1n1f(xk)]

例题

例题1

4106b46018b45b890adee5346c87c88.jpg

例题2

当有数值出现的时候,需要空一格选数字, x 0 , x 2 , x 4 x_0,x_2,x_4 x0,x2,x4,这个时候 n = 2 , h = b − a n = 1 n=2,h=\frac{b-a}{n}=1 n=2,h=nba=1
7a87f0271ceb6fca5e0210bef1e9f3c.jpg

第七章 非线性方程求根

牛顿法

公式:

x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_n-\frac{f\left( x_n \right)}{f\prime\left( x_n \right)} xn+1=xnf(xn)f(xn)

例题

使用计算器反复迭代
d23a8d7234026c4422f87a55ebbc1ee.jpg

二分法

列一个表格:

k(迭代次数)a(左端点值)b(右端点值)c(中间值)f(a)f(b)
1010.50.00.50.25
2010.250.00.00.125
3010.1250.00.00.0625

选择的值需要一正一负进行迭代

使用公式预估迭代次数:
b − a 2 k < ε \frac{b-a}{2^k}<\varepsilon 2kba<ε

例题:

924f006d0f40b2fb60f4ce36501ccf5.jpg

不动点迭代

image.png

判断收敛条件

  1. 建立迭代格式
  2. 对迭代格式进行求导的绝对值,如果值小于1,则收敛
    3858deb780a274c8fe7226b09df4b3e.jpg

计算迭代格式

  1. 在计算器中输入初值
  2. 按AC清空,然后输入迭代格式,其中x在计算器为ANS
  3. 反复计算得出结果
    291694f4662d0c19ec7e4256028291d.jpg

第九章 常微分方程初边值问题数值解

欧拉公式

公式:

y n + 1 = y n + h f ( x n , y n ) y_{n+1}=y_n+hf\left( x_n,y_n \right) yn+1=yn+hf(xn,yn)

例题

b685e9e36f6fe9735fc133a0b1061a3.jpg

改进的欧拉公式

公式:

y ( 0 ) n + 1 = y n + h f ( x n , y n ) {y^{\left( 0 \right)}}_{n+1}=y_n+hf\left( x_n,y_n \right) y(0)n+1=yn+hf(xn,yn)
y n + 1 = y n + h 2 [ f ( x n , y n ) + f ( x n + 1 , y ( 0 ) n + 1 ) ] y_{n+1}=y_n+\frac{h}{2}\left[ f\left( x_n,y_n \right) +f\left( x_{n+1},{y^{\left( 0 \right)}}_{n+1} \right) \right] yn+1=yn+2h[f(xn,yn)+f(xn+1,y(0)n+1)]

例题

6cf4611c379f90461862906ce35dcad.jpg
b040e5863d0b1f325bbf24561b811ee.jpg

梯形公式

公式:

y n + 1 = y n + h 2 [ f ( x n , y n ) + f ( x n + 1 , y n + 1 ) ] y_{n+1}=y_n+\frac{h}{2}\left[ f\left( x_n,y_n \right) +f\left( x_{n+1},y_{n+1} \right) \right] yn+1=yn+2h[f(xn,yn)+f(xn+1,yn+1)]

例题

0c3497303c628b53e1322132bd24791.jpg
50b9326560bc016b6aa65d4b3dc4826.jpg

龙格-库塔公式

基本概念

一般问题会有 y ′ , h , f ( x ) = y y', h , f(x) = y y,h,f(x)=y等参数
将其转换为
image.png

注意h的值,一般是在 0 ≤ x ≤ 1 0 \le x \le 1 0x1之间,逐渐相加之后递增到1结束计算

四阶四段龙格库塔公式如下:
image.png

解题步骤

  1. x 0 , y 0 , h x_0,y_0,h x0,y0,h写在旁边
  2. 先将题目中给出的已知信息代入 k 1 , k 2 , k 3 , k 4 k_1,k_2,k_3,k_4 k1,k2,k3,k4
  3. 更新 y n y_n yn的值
  4. 重复过程

k 2 k_2 k2->f的 x n + h 2 x_n+\frac{h}{2} xn+2h表示 x x x,同理另外一个表示 y y y,将其代入到f(x,y)中进行化简

02a8186f69218c968ad62f27dd644e3.jpg

  • 32
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
对于数值分析期末复习笔记.docx,下面是我简要的回答。 数值分析是一门研究利用数学方法解决数学问题的学科,重点在于求解数值计算问题以及分析数值计算方法的准确性和稳定性。在课程学习中,我们可以通过掌握一些重要的概念、算法和技巧来提高数值计算的效率和正确性。 在复习笔记中,可以包括以下内容: 1. 数值计算基础知识:涉及数值计算的误差、舍入误差和截断误差的概念以及如何进行误差分析。 2. 插值法:包括拉格朗日插值、牛顿插值和埃尔米特插值等方法,用于根据给定的数据点推断不存在的数据点。 3. 数值微积分:数值积分和数值微分的方法,包括梯形法则、辛普森法则和复合求积法。 4. 方程求解:包括二分法、牛顿迭代法和割线法等求解非线性方程的数值方法。 5. 线性方程组的数值解法:高斯消元法、LU分解法和迭代法(如雅可比法和Gauss-Seidel法)等。 6. 最小二乘拟合:通过最小化残差平方和来拟合一组数据点。 7. 常微分方程的数值解法:如欧拉方法、龙格-库塔法和Adams-Bashforth法等。 此外,还应该重点关注与数值分析相关的数值计算的应用领域,如工程、金融等。 通过复习这些重点内容,可以帮助我们更全面地理解数值分析的基本原理和方法,提高我们解决实际问题的能力。当然,为了更好地复习和掌握数值分析,日常的练习和理解概念也是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值