2024.12.19 晚23:00
自己的研究方向是关于高速目标相参积累的,LVD感觉很有用,打算自己仿真一下,网上的资源比较少,找到的代码和论文还是有一点出入,也不好调试,感觉还是要自己编一下。
由于每周都得组会汇报,这个就当进度条吧,有进展就往这里面加一点。
按照我的初步理解,吕变换总共分为三个步骤
1.PSIAF参数对称自相关函数
2.解开延时变量的耦合
3.傅里叶变换
1.首先看看第一步吧:
2025.3.5 晚19:00(很抱歉耽搁了这么久,先搞了个别的idea,这个年后开学后搞得,感觉还是有一些疑惑吧,希望大家看到后可以帮忙指导一下)
首先就是关于瞬时参数自相关函数,这一步和WVD变换几乎是差不多的,就是引入了一个变量tau,但是理论是理论,实操的时候,咱们仿真的是离散的信号。这一步说实话我不太会tao这步的处理,所以这是仿真的效果:我先假设tau是从负到正对称的轴,phi是左右平移的相位。通过cirshift函数对原信号进行左右平移,然后把平移出去的数字就那零补在后面,最后再共轭相乘就得到了最终的自相关函数。下面是第一步的公式:
a = 1;
tau = round(-N/2:N/2-1);
for ii = 1:length(tau)
phi = round(tau(ii)+a/2);
R_left = circshift(signal_lfm,-phi);
x_left = [R_left(1,1:(length(R_left)-abs(phi))),zeros(1,abs(phi))];
R_right = circshift(signal_lfm,phi);
x_right = [zeros(1,abs(phi)),R_right(1,(abs(phi)+1):end)];
psiaf(ii,:) = conj(x_right).*x_left;
end
步骤一的仿真结果
这一步的仿真结果应该是对的,仿真后的形状首先要是对称的,其次他的形状和你tau的范围有关,也有三角的,正方形的,具体哪个对我不太清楚,应该都是对的。(其实这一步真的不很确定,尤其是常数a的设置,这个其实你不加也是这个结果,但是这个对第二步有影响)
这是对上面的自相关函数做了一个FFT,得到的是一条斜线,和理论对的上(WVD的结果),所以应该第一步没什么问题
2.第二步就是解开延时耦合
这一步在我看来其实就和Keystone变换一样,解一个耦合,把慢时间轴插值换一下就完事了,但是,我做不出来,感觉是a、h两个常数搞的鬼。(也有可能是我第一步的问题?)这个结果肯定是有问题的,所以也请大家帮忙找找问题。我是用插值的方式来完成的,没有用变尺度傅里叶变换做这一步
h = 1;
for tt = 1:length(tau)
tn = 1/(h*(2*tau(tt)*Ts+a)).*t;
S_psiaf(tt,:) = interp1(t,R_tao(tt,:),tn);
end
I = isnan(S_psiaf);
S_psiaf(I) = 0;
上面这个就是通过插值完成的,其中tn,就是每次要变换的系数,也就是原论文中指的关键的那一步,通过这一步后就解耦合了。
上面是自相关函数解耦合后的图像,(这个我也不确定对不对)因为原论文也没有具体解耦合后是什么样的,也没有自相关图是什么样的。
按道理来讲,解完耦合后应该再做FFT,也就是相当于一个缩放的WVD变换,斜线应该就是直线了,和Keystone一样,之所以会出现直线,就是因为耦合项,解耦合后就应该是直线。所以下面就是解耦合后的SWVD图(就是上面那个图做了一个FFT):
可以看出是变直了(还是有点斜),旁边还有一个很明显的干扰,这个应该和tau的选取范围有关,也有可能和a,h系数有关,这个我不太清楚。
3.LVD
先就这样吧,然后按照论文的,在做一个FFT(一个横着做,一个竖着做)
可以看出有一个尖峰,但是很明显有个伪峰,这个应该和上一步SFT的干扰有关,然后尖峰竟然是斜的,这个应该和上面SFT那步有关,并没有完全恢复直,这就有可能是插值时插值的系数有问题。
再看看换一个tau的范围,会不会好一点
我试了试,感觉没有变好,我目前就做到这里了,大家可以借鉴我的(肯定是错的),在评论里一起交流一下,咱们学雷达的一起加油。