【动手学深度学习】01线性回归模型原理讲解和代码实现(pytorch)

目录

线性回归原理讲解

定义

线性回归假设

线性回归目标

损失函数

小批量随机下降

正态分布和平方损失

线性回归代码实现(pytorch)


线性回归原理讲解

定义

回归(regression)是指⼀类为⼀个或多个⾃变量与因变量之间关系建模的⽅法。在⾃然科学和社会科学领域,回归经常⽤来表示输入和输出之间的关系。

线性回归假设

线性回归基于⼏个简单的假设,

  1. 假设⾃变量x和因变量y 之间的关系是线性的,即y可以表⽰为x中元素的加权和,这⾥通常允许包含观测值的⼀些噪声;
  2. 我们假设任何噪声都⽐较正常,如噪声遵循正态分布。

线性回归目标

给定训练数据特征X和对应的已知标签y,线性回归的⽬标是找到⼀组权重向量w和偏置b。当给定从X的同分布中取样的新样本特征时,找到的权重向量和偏置能够使得新样本预测标签的误差尽可能小。
在我们开始寻找最好的模型参数(model parameters)w和 b 之前,我们还需要两个东西:

(1)⼀种模型质量的度量⽅式;

(2)⼀种能够更新模型以提⾼模型预测质量的⽅法。

损失函数

在我们开始考虑如何⽤模型拟合(fit)数据之前,我们需要确定⼀个拟合程度的度量。损失函数能够量化目标的实际值与预测值之间的差距。通常我们会选择⾮负数作为损失,且数值越小表⽰损失越小,完美预测时的损失为0。回归问题中最常⽤的损失函数是平方误差函数

当样本 i 的预测值为 ˆy(i),其相应的真实标签为 y(i) 时,平⽅误差可以定义为以下公式:

估计值 ˆy(i) 和观测值 y(i) 之间较⼤的差异将贡献更⼤的损失。为了度量模型在整个数据集上的质量,我们需计算在训练集n个样本上的损失均值(也等价于求和)。 

在训练模型时,我们希望寻找⼀组参数 (w∗, b∗),这组参数能最小化在所有训练样本上的总损失。如下式:

小批量随机下降

即使在我们⽆法得到解析解的情况下,我们仍然可以有效地训练模型。在许多任务上,那些难以优化的模型效果要更好 。

我们⽤到⼀种名为梯度下降(gradient descent)的⽅法,这种⽅法⼏乎可以优化所有深度学习模型。 它通过不断地在损失函数递减的⽅向上更新参数来降低误差。

 梯度下降最简单的⽤法是计算损失函数(数据集中所有样本的损失均值)关于模型参数的导数(在这⾥也可 以称为梯度)。但实际中的执⾏可能会⾮常慢:因为在每⼀次更新参数之前,我们必须遍历整个数据集。因此, 我们通常会在每次需要计算更新的时候随机抽取⼀小批样本,这种变体叫做小批量随机梯度下降(minibatch stochastic gradient descent)

在每次迭代中,我们⾸先随机抽样⼀个小批量B,它是由固定数量的训练样本组成的。然后,我们计算小批 量的平均损失关于模型参数的导数(也可以称为梯度)。最后,我们将梯度乘以⼀个预先确定的正数η,并从 当前参数的值中减掉。 

 |B| 表⽰每个小批量中的样本数,这也称为批量⼤小(batch size)。η 表⽰学习率(learning rate)。批 量⼤小和学习率的值通常是⼿动预先指定,而不是通过模型训练得到的。这些可以调整但不在训练过程中更 新的参数称为超参数(hyperparameter)。调参(hyperparameter tuning)是选择超参数的过程。超参数通 常是我们根据训练迭代结果来调整的,而训练迭代结果是在独⽴的验证数据集(validation dataset)上评估得到的。
在训练了预先确定的若⼲迭代次数后(或者直到满⾜某些其他停⽌条件后),我们记录下模型参数的估计值, 表⽰为ˆw, ˆb。但是,即使我们的函数确实是线性的且⽆噪声,这些估计值也不会使损失函数真正地达到最小 值。因为算法会使得损失向最小值缓慢收敛,但却不能在有限的步数内⾮常精确地达到最小值。

线性回归恰好是⼀个在整个域中只有⼀个最小值的学习问题。但是对于像深度神经⽹络这样复杂的模型来说, 损失平⾯上通常包含多个最小值。幸运的是,出于某种原因,深度学习实践者很少会去花费⼤⼒⽓寻找这样 ⼀组参数,使得在训练集上的损失达到最小。事实上,更难做到的是找到⼀组参数,这组参数能够在我们从 未⻅过的数据上实现较低的损失,这⼀挑战被称为泛化(generalization)。

正态分布和平方损失

 我们通过对噪声分布的假设来解读平⽅损失⽬标函数。 正态分布(normal distribution),也称为⾼斯分布(Gaussian distribution),最早由德国数学家⾼斯(Gauss) 应⽤于天⽂学研究。正态分布和线性回归之间的关系很密切。简单的说,若随机变量x具有均值µ和⽅差σ2 (标准差σ),其正态分布概率密度函数如下:


均⽅误差损失函数(简称均⽅损失)可以⽤于线性回归的⼀个原因是:我们假设了观测中包含噪声,其中噪 声服从正态分布。噪声正态分布如下式:

我们现在可以写出通过给定的x观测到特定y的可能性(likelihood): 

根据最⼤似然估计法,参数w和 b 的最优值是使整个数据集的可能性最⼤的值:
 

根据最⼤似然估计法选择的估计量称为最⼤似然估计量。虽然使许多指数函数的乘积最⼤化看起来很困难, 但是我们可以在不改变⽬标的前提下,通过最⼤化似然对数来简化。由于历史原因,优化通常是说最小化而 不是最⼤化。我们可以改为最小化负对数似然−logP(y | X)。由此可以得到的数学公式是:
 

现在我们只需要假设σ是某个固定常数就可以忽略第⼀项,因为第⼀项不依赖于 w和b。现在第⼆项除了常数 1外,其余部分和前⾯介绍的平⽅误差损失是⼀样的。幸运的是,上⾯式⼦的解并不依赖于σ。因此,在 ⾼斯噪声的假设下,最小化均⽅误差等价于对线性模型的最⼤似然估计。
(此处若看不懂,去看一下似然估计

对于线性回归,每个输⼊都与每个输出(在本例中只有⼀个输出)相连,我们将这种变换称为全连接层(fully-connected layer)(或称为稠密层dense layer)。

线性回归代码实现(pytorch)

  

import numpy as np
import torch
from torch.utils import data    # 处理数据模块
from d2l import torch as d2l
from torch import nn

# 生成数据集
true_w = torch.tensor([2,-3.4])
true_b = 4.2
features,labels = d2l.synthetic_data(true_w,true_b,1000)

# 读取数据集
def load_array(data_arrays,batch_size,is_train=True):
    """ 构造 torch 数据迭代器 """
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset,batch_size,shuffle=is_train) # shuffle=is_train 随机打破顺序

batch_size = 10
data_iter = load_array((features,labels),batch_size)

print(next(iter(data_iter)))

# 定义模型

net = nn.Sequential(nn.Linear(2,1))

# 初始化模型参数
net[0].weight.data.normal_(0,0.01)  # 使用正态分布normal_(0,0.01)替换相应的值
net[0].bias.data.fill_(0)   # bias 设置为0

# 定义损失函数
loss = nn.MSELoss() # 均方误差

# 定义优化算法

trainer = torch.optim.SGD(net.parameters(),lr=0.03)

# 训练
num_epochs = 3
for epoch in range(num_epochs):
    for X,y in data_iter:
        l = loss(net(X),y)
        trainer.zero_grad()
        l.backward()
        trainer.step()  # 进行模型的更新
    l = loss(net(features),labels)
    print("epoch:{:}".format(epoch+1),"loss:{:.6f}".format(l))


w = net[0].weight.data
print("w的估计误差:{:}".format(true_w-w.reshape(true_w.shape)))
b = net[0].bias.data
print("b的估计误差:{:}".format(true_b-b))



点个赞吧!

the end!

 参考:

《动手学深度学习》--李沐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值