【AI气象4】U-Net based Nowcasting:Machine Learning for Precipitation Nowcasting fromRadar Images

本文探讨了使用深度学习,特别是U-Net卷积神经网络在高分辨率降水短临预报中的应用,结果显示这种方法优于传统模型如光流和数值模型HRRR。研究者将降水预测视为图像到图像的转换,以提高预测效率和准确性,适应气候变化下的极端天气需求。
摘要由CSDN通过智能技术生成

目录

0. 论文基本信息

1. 背景介绍

2. 数据设置

3. 评估&结果

4.未来工作

5.结论

附录

A 相关深度学习工作


0. 论文基本信息

1. Paper:https://arxiv.org/pdf/1912.12132.pdf

2. Code:暂无

3. [引用] Agrawal S, Barrington L, Bromberg C, et al. Machine learning for precipitation nowcasting from radar images[J]. arXiv preprint arXiv:1912.12132, 2019.

4. 摘要—高分辨率的短时天气预报对于有效应对气候变化,尤其是极端天气,是一种必不可少的工具。由于深度学习(DL)技术在许多领域,包括地球科学,已经显示出巨大的潜力,因此我们提出了DL在降水现在预测问题上的应用,即高分辨率(1公里×1公里)短期(1小时)降水预测。我们将天气预报视为图像到图像的转换问题,并利用广泛使用的U-Net卷积神经网络的强大能力。与三种常用模型:光流、持续性和NOAA的数值一小时HRRR现在预测相比,我们发现这种方法的性能表现较好。

5. 关键词—Unet、降水短临预报。

6. arXiv (2019)

1. 背景介绍

高分辨率降水短临预测是在高空间分辨率下预测未来降水的问题。这种类型的预测需要以低延迟处理大量数据,这是机器学习非常适合的特性。相反,大多数传统方法要么使用光流(OF)模型[6],要么使用数值模型。光流模型试图识别物体在一系列图像中的运动方式,但无法表示风暴的产生或衰减的动态过程(这些动态过程可以说是影响使用天气预报的人的决策的主要因素)。数值方法明确模拟了底层大气物理过程,并可以提供可靠的预测,但通常需要数小时来进行推断,这限制了它们在现在预测中的使用能力。

随着气候变化改变了天气模式,极端天气事件的频率增加,提供高空间和时间分辨率的可操作预测变得更加重要。这种预测有助于有效的规划、危机管理和减少人员和财产损失。基于DL的基础设施可以在接收到新数据后的几分钟内提供预测,从而使其完全集成到高度响应的预测服务中,这可能更适合现在预测的需求,而不是传统的数值方法。

在本文中,我们关注从多普勒雷达中预测未来一小时的瞬时降水率的子问题。具体而言,我们提供了三个二元分类,指示降水率是否超过了与微量降雨、小雨和中雨大致对应的阈值。我们的预测以1公里的空间分辨率为基础,位于美国大陆,并基于NEXRAD的数据[4]。NEXRAD是由国家海洋和大气管理局(NOAA)的国家气象局(NWS)运营的159个高分辨率天气雷达站组成的网络。

我们将天气预报视为图像到图像的转换问题,其中我们提供了一系列从某个时间点tin1开始并在tinn结束的输入雷达图像。我们的任务是生成在将来某个时间点tout的雷达图像。在我们处理的时间尺度上,水平大气平流是雷达图像变化的主要驱动因素,而这些图像代表了我们在神经网络模型中捕捉到的动态过程。更具体地说,我们使用了广泛使用的U-Net卷积神经网络(CNN)[12]。有关更多详细信息,请参见附录。

2. 数据设置

多雷达多传感器(MRMS)系统由美国国家气象局(NOAA)国家严重风暴实验室开发,每2分钟提供1km x 1km的空间分辨率的降水率更新。该系统将雷达与地面观测和数值天气预测方法相结合,以获得当前条件的高分辨率地图。我们使用了MRMS数据,时间跨度为2017年7月至2019年7月。

每个雷达站单独以径向模式扫描其环境,扫描时间和仰角会变化,以提供3D体积反射率图。空间分辨率通常在1km半径 x 1度方位角内。覆盖范围存在许多间隙,但也有多个站点覆盖的重叠区域。我们使用了MRMS数据集[16],该数据集移除了非气象工件并将组合观测投影到矩形网格上。

我们对数据进行了三种转换。首先,对于我们的标签图像,我们根据每小时毫米雨量的三个阈值,将降水率量化为四个离散范围:[0; 0:1); [0:1; 1:0); [1:0; 2:5)和[2:5; 1)。其次,由于美国太大,无法一次建模,因此我们将美国划分为256km x 256km的网格块,并独立为每个块进行预测。第三,由于大多数块没有降雨,我们过采样了有雨的块,以确保至少80%的块至少有一个像素的降雨。

我们的模型是在2018年收集的数据上训练的,并在2017年和2019年的两个半年数据上进行了测试。

图1显示了我们数据的示例。左侧图像显示了输入。中间图像是我们量化的1小时预测,右侧图像是量化的1小时地面真实数据。

3. 评估&结果

我们对模型进行了三个不同阈值的二进制分类性能评估,并在计算精确度和召回率(PR)指标时将每个输出像素视为单独的预测。我们将结果与以下内容进行比较:MRMS持续性、光流(OF)[10]和HRRR一小时预报[3]。

MRMS持续性是一个平凡的模型,其中一个位置被预测为在下一个小时内以与当前降雨速率相同的速率下雨。与持续性比较是常见的,因为通常很难超越这一模型。光流方法是更复杂的方法,试图明确地建模通过一系列图像移动的物体的速度,也常用于天气预测。HRRR是NOAA的一种快速刷新数值模型,提供了在3km网格上各种大气变量的1小时到18小时的预测,考虑了最近的卫星和雷达观测。我们使用最近邻启发式方法来将其3km网格与我们的1km MRMS网格对齐。我们使用它们的Total_precipitation_surface_1_Hour_Accumulation估计作为基准,发现在各种HRRR的降水预测中,这是对MRMS最好的预测器之一[3]。我们只能访问它们的最终预测结果,因此无法为它们的结果提供完整的PR曲线。

我们的模型表现优于这三种方法。特别是与1小时的HRRR预报相比,这是非常显著的,因为HRRR的1小时预报实际上无法在实践中使用,因为计算需要超过1小时。相反,对于从现在开始的1小时预测,用户必须使用在现在之前2小时进行的3小时预测,这将导致HRRR的性能甚至比我们正在比较的1小时结果更差。然而,一旦预测窗口增加到大约5小时,HRRR模型始终优于我们的方法。

4.未来工作

未来工作有几个明确的方向,例如,可以考虑将其他输入数据的附加模态性,如地面或卫星测量,纳入模型。确定在DL模型中组合这些数据的最有效方式仍然是一个积极研究的领域。

另一个方向可能是对神经网络的拓扑结构和超参数进行细化。特别是,生成对抗网络(GANs)[1]在需要使输出具有某种质量以使其有效的图像转换问题中显示出巨大的潜力。由于我们对独立的地理瓷砖进行预测,边界效应也可能成为一个问题。当雨区存在于瓷砖边界附近时,CNN无法知道雨水来自哪个方向,因此也无法确定雨水的前进方向。图1显示了这种情况的一个示例,我们没有充分预测到瓷砖东南部的降雨。

此外,还有许多类型的附加数据,与雷达数据结合使用可以显著扩展我们预测的效用。例如,不仅仅基于雷达数据进行预测,而是基于卫星数据进行预测,将允许在地球上几乎任何地方进行预测。事实上,使用CNN的主要动机之一是如何轻松地添加和/或替换各种不同的图像作为输入。

5.结论

我们探讨了将降水短时预报视为图像到图像转换问题的有效性。与建模大气降水演变中涉及的复杂物理过程相比,这是一种数据驱动的输入/输出问题处理方式,后者需要耗费大量时间和计算资源。输入是一系列MRMS图像,提供了给定区域降雨的简要历史记录,输出是一小时后的降雨状态。

我们利用U-Net的强大能力,它是一种常用于图像翻译问题的卷积神经网络类型,并且证明了直接使用它可以比传统的数值方法更好地进行短期预报预测,前提是预测窗口在几个小时的数量级上。一个仍然存在的问题是,纯粹的机器学习数据驱动方法是否能够胜过传统的数值方法,或者最终最佳的预测可能需要来自两种方法的结合。

附录

A 相关深度学习工作

先前在深度学习应用于降水短时预报的工作可大致分为两类:(1)明确建模时间的方法,例如使用递归神经网络(RNN),以及(2)使用CNN将输入图像转换为所需的输出图像的方法。

基于RNN的解决方案的示例包括Shi等人的工作[14],他们引入了卷积LSTM(ConvLSTM)的使用,该方法只对空间上相邻区域之间更有用的关系进行参数化。Shi等人[15]进一步改进了这一方法,引入了轨迹GRU,明确学习了数据中具有空间变化关系的特征,也就是说,他们的模型可以根据区域输入的地理位置特征的不同来进行不同的预测。Sato等人[13]引入了PredNet架构的使用,该架构添加了跳跃连接和扩张卷积,以进一步改善训练效果。

基于CNN的方法的示例包括Lebedev等人的工作[9],他们也使用了U-Net架构。他们使用他们的CNN来预测与给定的卫星图像同时发生的雨,然后使用光流算法来预测未来的雨。Ayzel等人[2]展示了一个基准CNN模型,性能可与最先进的光流算法相媲美。Hernandez等人[8]也使用CNN来对图像进行建模,然后使用简单的感知器模型来执行短时预报。Qui等人[11]使用了一个多任务CNN,明确包括各个雷达站特征的特点,以改善他们的CNN的质量。我们使用CNN来进行短时预报,而不是估计与给定时刻的降水量。

与Lebedev等人不同,我们也尝试了光流方法,但不同于他们,我们发现光流的性能较差。这可能是因为光流方法做出了明显违反的假设,例如,降雨量不会随时间改变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值