unity(C#)实现二叉树(1)

功能实现:

//直接复制(可用)
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;


public class BST1<E> where E : IComparable<E>
{
    private class Node
    {
        public E key;

        public Node left;
        public Node right;

        public Node(E key)
        {
            this.key = key;
            left = null;
            right = null;
        }
    }

    private Node root;
    private int N;

    public BST1()
    {
        root = null;
        N = 0;
    }
    
    public int Count { get { return N; } }

    public bool IsEmpty { get { return N == 0; } }

    /// <summary>
    /// 添加
    /// </summary>
    /// <param name="e"></param>
    public void Add(E e)
    {
        root = Add(root, e);
    }
    //以node为根的树中添加元素e,添加后返回根节点node
    private Node Add(Node node, E e)
    {
        if (node==null)
        {
            N++;
            return new Node(e);
        }

        if (e.CompareTo(node.key) < 0)
        {
            node.left = Add(node.left, e);
        }
        else if(e.CompareTo(node.key) > 0)
        {
            node.right = Add(node.right, e);
        }

        return node;
    }

    /// <summary>
    /// 查找
    /// </summary>
    /// <param name="e"></param>
    /// <returns></returns>
    public bool Contains(E e)
    {
        return Contains(root, e);
    }
    //看以node为根的树中是否包含元素e
    private bool Contains(Node node, E e)
    {
        if (node==null)
        {
            return false;
        }

        if (e.CompareTo(node.key) ==0)
        {
            return true;
        }
        else if (e.CompareTo(node.key) <0)
        {
            return Contains(node.left, e);
        }
        else
        {
            return Contains(node.right, e);
        }
    }

    /// <summary>
    /// 前序遍历([根左右])
    /// </summary>
    public void PreOrder()
    {
        PreOrder(root);
    }
    //前序遍历以node为根的二叉查找树
    private void PreOrder(Node node)
    {
        if (node==null)
        {
            return;
        }

        Debug.Log(node.key);
        PreOrder(node.left);
        PreOrder(node.right);
    }

    /// <summary>
    /// 中序遍历(排序[左根右])
    /// </summary>
    public void InOrder()
    {
        InOrder(root);
    }
    //中序遍历以node为根的二叉查找树
    private void InOrder(Node node)
    {
        if (node == null)
        {
            return;
        }

        InOrder(node.left);
        Debug.Log(node.key);
        InOrder(node.right);
    }

    /// <summary>
    /// 后序遍历([左右根])
    /// </summary>
    public void PostOrder()
    {
        PostOrder(root);
    }
    //后序遍历以node为根的二叉查找树
    private void PostOrder(Node node)
    {
        if (node == null)
        {
            return;
        }

        PostOrder(node.left);
        PostOrder(node.right);
        Debug.Log(node.key);
    }

    /// <summary>
    /// 层序遍历
    /// </summary>
    public void LevelOrder()
    {
        Queue<Node> q = new Queue<Node>();
        q.Enqueue(root);

        while (q.Count!=0)
        {
            Node cur = q.Dequeue();
            Debug.Log(cur.key);

            if (cur.left!=null)
            {
                q.Enqueue(cur.left);
            }
            if (cur.right != null)
            {
                q.Enqueue(cur.right);
            }
        }
    }

    /// <summary>
    /// 查找最小节点
    /// </summary>
    public E Min()
    {
        if (IsEmpty)
        {
            throw new ArgumentException("二叉树为空!");
        }
        return Min(root).key;
    }
    //返回以node为根的二叉查找树的最小值所在的节点
    private Node Min(Node node)
    {
        if (node.left==null)
        {
            return node;
        }
        else
        {
            return Min(node.left);
        }
        
    }

    /// <summary>
    /// 查找最大节点
    /// </summary>
    public E Max()
    {
        if (IsEmpty)
        {
            throw new ArgumentException("二叉树为空!");
        }
        return Max(root).key;
    }
    //返回以node为根的二叉查找树的最小值所在的节点
    private Node Max(Node node)
    {
        if (node.right == null)
        {
            return node;
        }
        else
        {
            return Min(node.right);
        }

    }

    /// <summary>
    /// 删除最小节点
    /// </summary>
    public E RemoveMin()
    {
        E ret = Min();
        root = RemoveMin(root);
        return ret;
    }
    //删除以node为根的二叉查找树中的最小节点
    //返回删除节点后新的二叉查找树的根
    private Node RemoveMin(Node node)
    {
        if (node.left==null)
        {
            N--;
            return node.right;
        }

        node.left = RemoveMin(node.left);
        return node;
    }

    /// <summary>
    /// 删除最大节点
    /// </summary>
    public E RemoveMax()
    {
        E ret = Max();
        root = RemoveMax(root);
        return ret;
    }
    //删除以node为根的二叉查找树中的最大节点
    //返回删除节点后新的二叉查找树的根
    private Node RemoveMax(Node node)
    {
        if (node.right == null)
        {
            N--;
            return node.left;
        }

        node.right = RemoveMax(node.right);
        return node;
    }

    /// <summary>
    /// 删除任意节点
    /// </summary>
    /// <param name="e"></param>
    public void Remove(E e)
    {
        root = Remove(root, e);
    }
    //删除以node为根的二叉查找树中值为e的节点
    //返回删除节点后新的二叉查找树的根
    private Node Remove(Node node, E e)
    {
        if (node==null)
        {
            return null;
        }

        if (e.CompareTo(node.key)<0)
        {
            node.left = Remove(node.left, e);
            return node;
        }
        else if (e.CompareTo(node.key)>0)
        {
            node.right = Remove(node.right, e);
            return node;
        }
        else
        {
            if (node.right==null)
            {
                N--;
                return node.left;
            }

            if (node.left==null)
            {
                N--;
                return node.right;
            }

            //要删除的节点左右都有孩子
            //找到比待删除的节点大的最小节点,即待删除节点右子树的最小节点
            //用这个节点顶替待删除节点的位置

            Node s = Min(node.right);
            s.right = RemoveMin(node.right);
            s.left = node.left;

            return s;
        }


    }

    /// <summary>
    /// 查看二叉查找树的最大高度
    /// </summary>
    public int MaxHeight()
    {
        return MaxHeight(root);
    }
    private int MaxHeight(Node node)
    {
        if (node==null)
        {
            return 0;
        }

        return Math.Max(MaxHeight(node.left), MaxHeight(node.right) + 1);
    }
}

调用:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BinaryTree : MonoBehaviour
{
    void Start()
    {
        BST1CeShi();

    }

    private void BST1CeShi()
    {
        //想要存到二叉树中的数据
        int[] a = { 8, 4, 12, 2, 6, 10, 14 };

        BST1<int> bst = new BST1<int>();

        //添加到二叉树中
        for (int i = 0; i < a.Length; i++)
        {
            bst.Add(a[i]);
        }

        //直接调用二叉树中的方法即可
        //方法在代码中均有注释

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值