Detectron2入门教程-0

Detectron2系列教程介绍

由于笔者最近在进行多模态检测任务的时候接触到了Detectron2框架,Detectron2是由Facebook AI Research (FAIR)推出的基于PyTorch的模块化物体检测库,它在2019年10月10日发布,是Detectron的第二代版本。Detectron2完全重写于maskrcnn-benchmark,并采用了PyTorch语言实现,与原版相比,Detectron2具有更灵活和可扩展的设计,可以在单个或多个GPU服务器上快速训练。

由于Detectron2的封装程度较高,语法晦涩难懂,在进行该项目时时常花时间在找对应的模块上,而且缺少通俗易懂的入门教程,官网教程缺乏灵活性,本系列将从Detectron2安装、自定义数据集、自定义网络、验证集损失打印等主题入手,对Detectron2进行手把手入门。

Detectron2安装

官网下载Detectron2

git clone https://github.com/facebookresearch/detectron2.git

创建虚拟环境

conda create -n detectron2 python=3.9

安装detectron2之前需要先安装pytorch,使用nvcc -V查看当前cuda版本后,再pytorch官网上找到合适自己服务器的版本

笔者用的是:

pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html

安装fvcore

pip install fvcore==0.1.1.post20200716

安装pycocotools

pip install pycocotools

切换到detectron2所在文件夹,安装detectron2

pip install -e .

安装opencv

pip install opencv-python

测试安装是否成功

cd demo

python demo.py 
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml 
 --input input1.jpg   --output ./result.jpg   
--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl

如没有报错,则安装成功

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eason_12138

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值