Detectron2系列教程介绍
由于笔者最近在进行多模态检测任务的时候接触到了Detectron2框架,Detectron2是由Facebook AI Research (FAIR)推出的基于PyTorch的模块化物体检测库,它在2019年10月10日发布,是Detectron的第二代版本。Detectron2完全重写于maskrcnn-benchmark,并采用了PyTorch语言实现,与原版相比,Detectron2具有更灵活和可扩展的设计,可以在单个或多个GPU服务器上快速训练。
由于Detectron2的封装程度较高,语法晦涩难懂,在进行该项目时时常花时间在找对应的模块上,而且缺少通俗易懂的入门教程,官网教程缺乏灵活性,本系列将从Detectron2安装、自定义数据集、自定义网络、验证集损失打印等主题入手,对Detectron2进行手把手入门。
Detectron2安装
官网下载Detectron2
git clone https://github.com/facebookresearch/detectron2.git
创建虚拟环境
conda create -n detectron2 python=3.9
安装detectron2之前需要先安装pytorch,使用nvcc -V查看当前cuda版本后,再pytorch官网上找到合适自己服务器的版本
笔者用的是:
pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 torchaudio==0.10.0 -f https://download.pytorch.org/whl/torch_stable.html
安装fvcore
pip install fvcore==0.1.1.post20200716
安装pycocotools
pip install pycocotools
切换到detectron2所在文件夹,安装detectron2
pip install -e .
安装opencv
pip install opencv-python
测试安装是否成功
cd demo
python demo.py
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
--input input1.jpg --output ./result.jpg
--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
如没有报错,则安装成功