机器学习-Day3-支持向量机(一)01-03

文章介绍了线性可分和线性不可分的概念,特别是在高维空间中的超平面。支持向量机(SVM)的目标是找到最大化间隔的超平面,这个超平面能将数据集正确分类且具有最大的容错率。通过最优化理论,确定了寻找最优超平面的数学模型,这是一个凸优化问题,可以利用特定的工具包来解决。
摘要由CSDN通过智能技术生成

一、线性可分定义

1.线性可分【Linear Separable】:

  • 存在一条直线【当在三维,分隔是平面,以此类推】可将两个样本分开

2.线性不可分【Nonlinear Separable】:

  • 不存在一条直线【当在三维,分隔是平面,以此类推】将两个样本分开

  • 当维度大于等于4时,分隔界限将会变成超平面【Hyperplane】,由于人眼对空间的感知仅仅存在于三维,说明,我们无法直观在四维及以上画出分隔界限,以此来区分线性可分和线性不可分,这个时候我们必须借助数学,去给线性可分和线性不可分给出一个定义,如下:

3.数学定义

  • 我们用数学严格定义训练样本以及他们的标签,假设我们有N个训练样本他们的标签,其中yi取值为+-1是我们人为规定的【Xi代表第i个样本,Xij代表第i个样本的第j个属性】【yi代表的是其标记空间】

  • 用数学的形式严格定义二维层面的线性可分

  • 向量形式来定义线性可分

4.线性可分的最简化定义

5.课后思考题

二、问题描述

  • 支持向量机算法分为两个步骤:1.解决线性可分问题;2.再将线性可分问题中获得的结论推广到线性不可分的情况下

1.如何解决线性可分问题

  • 既然训练集是线性可分的,那么存在无数多个超平面将其分隔开来,那么哪一个超平面又是最优的呢?

  • 在上方的图纸中,我们通常会认为2号线是比较好的,但是根据没有免费午餐定理,其实这三条线概率是一样的,那什么会这样呢?其实是因为我们对训练样本的先验分布有一定的假设

  • 比如在下图,假设实线圆圈训练样本存在误差,实际位置是在虚线处,那么使用1号线就会出现分类错误,可知2号线更能抵御训练样本的误差,也是就他的误差容忍程度更大

2.如何得到分割线

那么2号线是怎么画出了的呢?

对于这一问题,Vladimir Vapnik基于最优化理论给出了答案

假设对于任意一条分隔样本的直线,将执行向一侧平行移动,直到它擦到一个或多个训练样本为止,如下图所示

  • 我们定义这两条虚线都是平行的,这两条平行线擦到的训练样本成为数据集的支持向量【Support Vectors】,把这两条平行线的距离叫做间隔【margin】,支持向量机要做的就是找到是的margin最大的那条直线,如下图所示,2号线的间隔最大,

  • 【事实上,对于这条线不是唯一的,例如平行于2号线的所有直线所得到的的间隔是一样大的,那么为了使的这条直线唯一,对此还增加了一个条件,这条线是在上下两个平行线的正中间】

3.小结

支持向量机寻找的最优分类直线应该满足【基于二维特征空间的结果,在多维,直线将变成超平面】:

(1)该直线分开了两类;

(2)该直线最大化间隔(margin)

(3)该直线处于间隔的中间,到所有支持向量距离相等

4.思考题

三、优化问题

1.最优超平面

(1.)该超平面分开了两类

(2)该超平面有最大化间隔

(3) 该超平面处于间隔的中间,到所有支持向量距离相等

2.数学定义

  • 在这一个知识模块,将学习如何同严格的数学,去寻找最优分类超平面的过程,写出一个最优化的问题

  • 假定训练样本集是线性可分的,支持向量机需要寻找的是最大化间隔MARGIN】的超平面

  • 公式说明:在最小化中,w是一个向量,他有m个分量,所以有:

  • 限制条件说明【对于N个样本集,一共有N个这样的条件,而w和b待求的值】

3.两大事实

  • 支持向量机要找一个超平面,使它的间隔最大【离两边所有支持向量的距离相等】,则存在以下两个事实:

4.公式推导

  • 我们可以通过上式公式推导,以二维的公式为例:

  • 我们基于事实一,可以支持向量机优化问题推导中最难理解的部分,

我们基于事实2,支持向量x0到超平面的距离将会成为:

5.问题转化

  • 也就是最大化支持向量到超平面的距离,等价于最小化||w||,优化问题定义为

我们再看限制条件:

  • 其中yi是协调超平面的左右,如下所示,的确也符合线性可分的定义:

  • 对于右边的常数可以任意替换,替换的式子之间也就相差了一个常数a,但其实指的是同一个平面

6.二次规划问题

对于上述的优化问题其实是凸优化问题【CONVEX OPTIMIZATION】中的二次优化问题

  • 二次规划的定义:

(1)目标函数【Objective Function】是二次项

(2)限制条件是一次项

  • 从而,在这两个条件下所得到的凸优化问题要么无解,要么只有唯一的最小值

  • 在最优化理论中,如果一个问题是凸优化问题,我们就会把它当成一个已经解决的问题,因为凸优化问题只有唯一一个全局极值,我们可以采用梯度下降的算法很方便得到解。总之,如果一个优化问题是凸的,我们总能找到高效快速的算法去解决他

  • 在这门课程中,我们不会详细去探讨如何解决凸优化问题,而只是假定,我们把问题转化为凸优化问题后,就能有解决凸优化问题的工具包去解决

7.课后思考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜小林然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值