基于支持向量机的分类预测
机器学习算法详解,day3 打卡!
1. 相关的概念
线性可分:在二维空间上,两类点被一条直线完全分开叫做线性可分。
超平面:从二维空间扩展到多维空间时,将两两类样本完全正确的划分开来的线(上述线性可分的直线)就变成了超平面(wx+b=0)。以最大间隔把两类样本分开的超平面称之为最大间隔超平面(这样做是为了使该超平面更具鲁棒性(稳定))。
- 两类样本分别被分割在超平面的两侧
- 两侧距离超平面最近的样本点到超平面的距离被最大化了。
支持向量:是一些离散的点,通常为样本中距离超平面最近的一些点。
2. 背景
支持向量机(Support Vector Machine,SVM)是一个非常优雅的算法,具有非常完善的数学理论,常用于数据分类,也可以用于数据的回归预测中,由于其其优美的理论保证和利用核函数对于线性不可分问题的处理技巧,在上世纪90年代左右,SVM曾红极一时。
3. 源码实现
3.1. 步骤
- 库函数导入
- 构建数据集并进行模型训练
- 模型参数查看
- 模型预测
- 模型可视化
3.2. 部分源码
## 基础函数库
import numpy as np
## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
## 导入逻辑回归模型函数
from sklearn import svm
##Demo演示LogisticRegression分类
## 构造数据集
x_fearures = np.array([[-