机器学习算法入门梳理——支持向量机的分类预测详解

本文介绍了支持向量机(SVM)的基本概念,如线性可分、超平面和支持向量,并详细阐述了SVM的背景、优缺点。通过Python实现SVM的步骤包括数据集构建、模型训练、预测和可视化。SVM因其数学理论支持和核技巧处理非线性问题而受到关注,但也存在训练时间长和预测复杂度高的缺点。
摘要由CSDN通过智能技术生成

基于支持向量机的分类预测

机器学习算法详解,day3 打卡!

1. 相关的概念

线性可分:在二维空间上,两类点被一条直线完全分开叫做线性可分。
超平面:从二维空间扩展到多维空间时,将两两类样本完全正确的划分开来的线(上述线性可分的直线)就变成了超平面(wx+b=0)。以最大间隔把两类样本分开的超平面称之为最大间隔超平面(这样做是为了使该超平面更具鲁棒性(稳定))。

  1. 两类样本分别被分割在超平面的两侧
  2. 两侧距离超平面最近的样本点到超平面的距离被最大化了。

支持向量:是一些离散的点,通常为样本中距离超平面最近的一些点。

2. 背景

支持向量机(Support Vector Machine,SVM)是一个非常优雅的算法,具有非常完善的数学理论,常用于数据分类,也可以用于数据的回归预测中,由于其其优美的理论保证和利用核函数对于线性不可分问题的处理技巧,在上世纪90年代左右,SVM曾红极一时。

3. 源码实现

3.1. 步骤

  1. 库函数导入
  2. 构建数据集并进行模型训练
  3. 模型参数查看
  4. 模型预测
  5. 模型可视化

3.2. 部分源码

##  基础函数库
import numpy as np

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入逻辑回归模型函数
from sklearn  import svm

##Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值