开关电容等效容值推导

图1 PWM控制的开关电容器的四种工作模式的电流路径 (a)模式1和模式2 (b)模式3和模式4

图2 PWM控制开关电容器的关键波形

  由于谐振网络的带通特性,图1中的I{_{C1}}可以近似为正弦波,如下所示:

I{_{C1}}=A\sin (\frac{2\pi }{T}t) \: \: \: \: (1)

其中A是幅度,T是I{_{C1}}的周期。因此,V_{C1}可以表示为:

V_{C1}=-\frac{AT}{2\pi C_{1}}\cos (\frac{2\pi}{T}t)\, \, \, \, (2)

V_{SW}可以表示如下:

V_{\mathrm{SW}}= \begin{cases} 0 \\ \frac{1}{C_2}\int_{t_1}^tI_{C1}dt & \end{cases} (3)

V_{SW}=0,处于模式1和模式4

V_{SW}=\frac{1}{C_2}\int_{t_1}^tI_{C1}dt,处于模式2和模式3。

由(1)-(3),通过傅里叶级数展开,可以导出V_{C1}+V_{SW}的基波分量;

\begin{aligned} V_{fh} & =\frac{2}{T}\int_{t_{0}}^{t_{4}}(V_{C1}+V_{\mathrm{SW}})\operatorname{cos}\left(\frac{2\pi}{T}t\right)dt & =-\frac{AT}{2\pi}\left\{\frac{1}{C_{1}}+\frac{1}{C_{2}}\left[1+\frac{1}{2\pi}\sin(2\pi d)-d\right]\right\} \end{aligned}\, \, \, \, \, \, (4)

其中d是PWM信号的占空比。因此,开关电容器电路的等效电容可以用d表示如下:

C_{\mathrm{eq}}=-\frac{A}{V_{fh}}\times\frac{T}{2\pi}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}\left[1+\frac{1}{2\pi}\sin(2\pi d)-d\right]}\, \, \, \, (5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值