去耦电容的容值计算

        去耦(decoupling)电容也称退耦电容,一般都安置在元件附近的电源处,用来滤除高频噪声,使电压稳定干净,保证元件的正常工作。先来简单说一下去耦电容作用,去耦电容中的“耦合”就是相互影响的意思。耦合电容的意义在于减少电源对负载的影响,同时也降低负载对电源的影响。

去耦,就是减少耦合,减少互相影响。 与之对应的还有一个词叫耦合电容。 这个我们以后再讲。这次我们主要讲一下耦合电容的取值。

        去耦电容的取值一般分为两个方面考虑 ,一方面是从储能分析 ,从储能角度分析是一个感性的认识,这个更容易去理解去耦电容的取值对电路的影响,但是我认为从储能的角度去考虑,仅仅将问题的分析停留在一个感性的认识或者说是一个定性的认识 。另一方面就是从电容的阻抗去分析,通过阻抗特性去定性的将去耦电容的值计算出来 。从储能方面考虑的相关资料有很多,这里就不再多说了,有感兴趣的话可以去找一下相关的视频 。本文主要讲一下去耦电容的阻抗法计算,在这里我在知网上找了一篇相关的论文《开关电源中去耦电容的选取与应用》,那么我就以这篇论文为例去分析一下 。

1、去耦电容的工作原理

        电容去耦即当电源不能满足负载需求的瞬态电流时,去耦电容对负载放电,以确保输出电压的稳定。采用电容去耦是解决电源噪声问题的主要方法, 这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗非常有效。

        图 1 是一个包含有去耦电容的电源电路,从 AB两点向左看去,稳压电源以及电容去耦系统一起可以
        看作一个复合的电源系统,如图 2 所示, 这个电源系统的特点是:不论 AB 两点间负载瞬态电流如何变化,都能保证 AB 两点间的电压保持稳定,即AB两点间电压变化很小。因此要求等效电源系统的阻抗 z 足够低。所以,从着这个角度理解,加去耦电容的目的就是降低等效电源系统的阻抗,从而降低电源的噪声。

图 1 包含去耦电容的电源电路

图2 等效电路

        这部分等效有很多朋友看不明白,这到底是咋等效的呀 ,怎么从一个并联变成了串联,这部分的知识其实就在电路分析这本书中用到的就是电路的等效变换,就不在这里展开讲了,感兴趣的朋友可以去看我这篇文章 。就题论题,对这部分电路进行一下说明。

        就这个等效图而言,去耦电容对高频电路有一定的阻抗,在这里电容C对交流电有一个阻碍的作用,它的阻抗我们把它记作Z1,原电路中和电源串联的电阻R是电源的内阻,我们重新将原电路整理一下,得到下图

        任何一个线性含源一端口网络,对外电路来说,可以用一个电压源与电阻的串联组合来等效替代,这里用到的定理就是戴维宁定理。

        “因此要求等效电源系统的阻抗Z足够低。” ,等效电源系统的阻抗 z 足够低,AB点的电压越稳定。那么这个阻抗 Z和电容的阻抗Z1是什么关系呢?电容的阻抗Z1满足什么条件时,“等效电源系统的阻抗 z 足够低”?

        这就要说一下电路是怎么等效的了。我们期望的等效如下图所示。

左图中AB的电压对应右图电源V3的电压(这个不难理解吧),这样我们就知道了等效电源的V3的值${\rm{V3}} = \frac{​{Z1}}{​{Z1 + R}}$,这样等效电路的电源我们就知道了。

        但是我们感兴趣的是等效电阻部分,在分析等效电阻的时候,<电压源短路,电流源开路>(有兴趣的可以推导一下,用电路分析中的叠加定理)

        电路变成了下图的样子,AB的等效电阻为RZ1的并联。即Z=R//Z1 ,显然Z1阻抗最小的时候,“等效电源系统的阻抗Z足够低。”

        那么等效之后的电路对不对呢?我们可以验证一下。给电路参数赋值,等效前后的电路如下:

        通过仿真我们可以看到等效前后的电路一致,为了严谨的证明一下我们的推导是否正确,给电路加任意一个负载,就加3.456Ω吧。

2 电容的频率特性

1、 自谐振:

        针对理想的电容器,不考虑电容的寄生电感和电阻,电容值越大阻抗越小。但实际的电容器会存在寄生电感和电阻,这些寄生参数在低频时表现不明显,但在高频时, 寄生参数的影响会超过容值本身。下图是实际电容器的 SPICE 模型,图 3 中, ESR 代表电容器的等效串联电阻, ESL 代表等效串联电感或寄生电感, C 为理想电容。

图 3 电容的等效电路

图4 电容的频率响应曲线

2、 实际电容器的引线或引脚,会产生寄生电感,制作电容的材料以及引线会存在阻抗。因此,实际的电容可以等效为一个串联谐振电路,其等效阻抗为:

\mathrm{Z=ESR+j2}\pi fESL+\frac{1}{j2\pi fC}=ESR+j\left(2\pi fESL-\frac{1}{2\pi fC}\right)

当2πfESL小于$\frac{1}{​{2\pi fC}}$时,整个电容器表现为电容性;当2πfESL 大于$\frac{1}{​{2\pi fC}}$时,电容器此时表现为电感性, 此时电容器不再是电容,而呈现为电感的特性;当${f_0} = \frac{1}{​{2\pi \sqrt {ESL*C} }}$  时,${\rm{2}}\pi fESL{\rm{ = }}\frac{1}{​{2\pi fC}}$  此时容性阻抗矢量与感性阻抗之差为0,电容的总阻抗最小,表现为纯电阻特性。

        频率点f0称为电容的自谐振频率。自谐振频率点是区分电容是容性还是感性的分界点,高于谐振频率时,电容器呈感性,去偶作用下降。因此,实际电容器都有一定的工作频率范围,只有在其工作频率范围内,电容才具有很好的去偶作用,如果一个电源系统需要在很宽的频率范围内去耦,就需要多个电容器的并联。

3、 并联谐振:

        容值不同的电容具有不同的自谐振频率,多个电容并联时,在某个频率范围内,一个电容呈容性,另一个电容呈感性,这两个电容就构成了LC并联电路,当电感的阻抗和电容的阻抗相等时,就发生了并联谐振,在并联谐振点处, 阻抗最大。比如,一个2.2uf的电容频率响应为图5,一个0.047uf电容的频率响应为图6,当2.2uf电容和0.047uf电容并联后的频率响应为图7,大约在10MHz处, 2.2uf电容与0.047uf电容发生谐振,致使在10MHz左右一段频率内去耦作用消失。

图 5 2.2uf 频率响应曲线

图 6 0.047uf 频率响应曲线

         因此在实际电源去耦时,需要多个不同阻值的电容并联使用,以满足在目标频率范围内电源阻抗低于目标阻抗的要求,同时要尽量压低两个并联电容的并联谐振点阻抗,确保电容在目标频率范围内的去耦能力。由于电容的频率响应曲线是非线性的,所有设计者无法通过计算推导出并联谐振点及谐振点阻抗,本文采用仿真软件可以直观体现谐振点频率以及谐振点阻抗与目标阻抗的关系。

3 利用仿真软件选取去耦电容的方法

        首先确定去耦电路的目标阻抗:

X_{MAX}=\frac{V_{DD}\times Ripple}{\Delta I_{MAX}}

        其中, X MAX 为目标阻抗, VDD 为输出电压, Ripple 为允许的电压波动范围, ∆IMAX 为负载需要的最大瞬态电流。

        其次,确定去耦电路的工作频率范围( f min ~f max  ),即去耦的频率范围。

        最后,把参数目标阻抗X MAX ,输出电压VDD ,负载需要的最大瞬态电流∆IMAX,去耦频率的最小值f min ,去耦频率的最大值 fmax等参数输入仿真软件,添加不同的电容就会得到不同的电容频率响应曲线。

        比如, 需要在 0-150M 的频率范围内对电源去耦,电源输出电压为 5V,电压波动控制在 3%范围内,输出最大电流为 1A,最大动态电流为 0.5A,通过仿真,整个电路只需要一个 0.022uf,一个 0.01uf,一个 0.22uf和一个 10uf 电容即可,仿真结果如图 8 所示。

图7 0.047uf与2.2uf频率响应曲线

图8 仿真实例

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值