引言
语义分割评价指标主要有三大类,分别是执行时间、内存占用和准确度。本文主要介绍几种指标和python代码实现:
F-score/DICE
F-score也称为Dice系数或QS(相似商),是一种衡量两个集合之间相似性的度量,对于语义分割任务而言即用来评估网络预测的分割结果与人为标注结果之间的相似度。F-score等于2倍的精确率和召回率的乘积除以精确率和召回率的和.
F 1 = 2 × P × R P + R F1 = \frac{2 \times P \times R}{P+R} F1=P+R2×P×R
# 计算F1-score(F1)
def f1_accuracy(pred, label):

本文介绍了用于语义分割任务的评估指标的Python实现,包括F-score(Dice系数)、像素准确率(PA)、类别像素准确率(CPA)、类别平均像素准确率(MPA)、交并比(IOU)以及平均交并比(MIoU)。这些指标衡量了预测分割结果与实际标签的相似性和准确性。
最低0.47元/天 解锁文章
1542





