深度学习SOTA模型对比时超参怎么设置?

在做SOTA模型对比实验不同的模型、数据集在不同的超参数得到的结果差异较大,主要有两种设置方法:
一、直接下载别人论文的代码,然后更换为自己需要的数据集,将结果记录,作为对比算法。
二、我只取其他人论文的模型部分,然后把所有对比算法模型都放在一个框架下跑,全部设置一样的超参数等。也就是除了模型(比如ResNet、DenseNet、PresNet、YOLO等等)不一样,其它所有参数等保持一致。

以下是网上的一些看法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
欢迎大家留言讨论论文中SOTA模型对比时超参是怎么设置的,如能附上论文举例更好😊

### 如何在学术论文中编写与最新技术水平(SOTA)的性能对比 撰写一篇高质量的科技论文时,与当前最先进的技术(State-of-the-Art, SOTA)进行性能对比是一个重要的环节。这不仅能够展示研究成果的独特价值,还能帮助读者理解新方法的优势所在。 #### 明确研究目标和意义 在描述与SOTA对比之前,应清晰阐述研究的目标及其重要性。通过定义明确的研究问题,可以更好地引导读者关注所提出的解决方案为何优于现有方案[^1]。 #### 设计合理的实验环境 为了公平有效地比较不同模型的表现,设计科学严谨的实验至关重要。确保测试条件一致,比如使用相同的硬件配置、数据集划分方式等数设定。对于视觉识别领域而言,在像LVIS这样的具有挑战性的数据集上评测是非常有说服力的做法之一[^3]。 #### 展现详尽的数据分析 提供详细的定量分析结果来支持结论。例如,当评估DetCLIPv3相对于其他先进算法如OWL-ST [43] 的表现差异时,可以通过计算各类指标如AP (Average Precision),并在表格形式下直观呈现出来。此外还应该讨论这些数值背后的意义——即为什么某些特定条件下本方法能取得更好效果?是否存在局限性? #### 综合考量多维度评价标准 除了传统意义上的准确性之外,还可以考虑加入更多元化的评判角度,如效率、鲁棒性等方面。正如Nova模型被从质量、多样性及新颖性三个层面进行全面衡量那样[^4],这样可以使文章更加丰满立体。 #### 结果解释与未来展望 最后不要忘记深入剖析所得出的结果,并对未来可能的发展方向给出建议或预测。如果发现自己的方法虽然总体优异但在个别场景下稍逊一筹,则需诚实地指出这一点并探讨潜在改进措施。 ```python def compare_with_sota(new_model_results, sota_models_results): """ Compare new model's performance against state of the art models. Args: new_model_results (dict): Dictionary containing metrics and their values for the new model. sota_models_results (list): List where each element is a dictionary representing one SOTA model with its metric scores. Returns: str: Summary string highlighting key differences between new model and existing SOAs. """ summary = "" # Iterate through all provided SOTA models to generate comparison details for idx, sota_result in enumerate(sota_models_results): current_comparison = f"\nComparison vs Model {idx+1}:\n" # Assuming both dictionaries have same keys corresponding to evaluation criteria for criterion in new_model_results.keys(): diff_value = abs(new_model_results[criterion] - sota_result.get(criterion, 0)) if new_model_results[criterion] > sota_result.get(criterion, 0): direction = "better than" elif new_model_results[criterion] < sota_result.get(criterion, 0): direction = "worse than" else: direction = "equal to" current_comparison += f"{criterion}: New Model ({new_model_results[criterion]}%) is {direction} SOTA({sota_result.get(criterion, 'N/A')}%)\n" summary += current_comparison return summary ``` 上述Python函数`compare_with_sota`展示了如何自动化生成针对多个SOTA模型的具体对比说明文本。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周末睡懒觉zzz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值