CINTA学前作业一:课前准备
标签(空格分隔): 作业
作业原文:
本作业可视为开学前的学习准备,也作为我了解大家的一次测试。任务包括如下:
1、建立自己的个人博客,根据自己 的喜好和习惯进行选择。
2、完成以下C语言代码,贴在自己的博客,并返回链接给我。
a、写一个插入排序的函数,即输入一个数组,完成排序;
b、完成一个函数,输入值为整数,输出该值的二进制。
c、完成一个判断整数是否素数的函数,即,输入一个整数,判断其是否素数。
3、编辑一个数学公式:a的立方 + b的立方 = c的立方
解答:
1.之前在cdsn写过一段时间(Ryancell, 有点水),后来leetcode也写过些题解(CODERYAN, 非常菜),Github上啥也没有seavenorth, 一直在白嫖别人的,不过也准备传一点东西上去了.
2.a:插入排序
void insertsort(vector<int> &nums)
{
int n = nums.size();
for (int i = 1; i < n; i++) //假设data[1]已经排好序,则后续元素只需判断插入其左/右侧
//若data[k]>data[k+1/2/3...target-1/target],则data[k]...data[target-1]全部右移一位,data[target]移动到data[k]
{
int j;
if (nums[i] < nums[i - 1]) //需要将data[i]插入有序子表
{
int tmp = nums[i]; //设置哨兵
for (j = i - 1; j >= 0 && tmp < nums[i]; j--)//设置判断元素nums[i]--当前循环的判断依据
{
nums[j + 1] = nums[j];//若data[j]>哨兵,则记录(判断元素)后移一位
}
nums[j + 1] = tmp; //插入到正确位置
}
}
}
2.b:进制转换
1.使用库函数
#include <iostream>
using namespace std;
#define MaxSize 80
void num_sys_converse();
void num_sys_converse()
{
int isradix, osradix;
char input[MaxSize], output[MaxSize];
int tmp = 0;
char *stop;
do
{
cout << "The number system of input:";
cin >> isradix;
if (isradix == 0)
return;
cout << "The number to be conversed:";
cin >> input;
cout << "The number system to converse to:";
cin >> osradix;
tmp = strtol(input, &stop, isradix);
_itoa_s(tmp, output, osradix);
cout << "Result:" << output << endl;
} while (true);
}
2.手写
#include <sstream>
//数转字符串
string num2str(double i)
{
stringstream ss;
ss << i;
return ss.str();
}
//任意2-36进制转换为10进制
int Atoi(string str, int radix)
{
int ans = 0;
for (int i = 0; i < str.size(); i++)
{
char tmp = str[i];
if (tmp >= '0'&&tmp <= '9')
ans = ans * radix + tmp - '0';
else
ans = ans * radix + tmp - 'a' + 10;
}
return ans;
}
//10进制转换为任意n进制
string Itoa(int n, int radix)//(10进制数,转换成的进制)
{
string ans = "";
while (n != 0)
{
int tmp = n % radix;
if (tmp >= 0 && tmp <= 9)
ans += tmp + '0';
else
ans += tmp - 10 + 'a';
n /= radix;
}
reverse(ans.begin(), ans.end());
return ans;
}
2.c:质数判断
1.线性筛
bool isprime(int num)
{
if (num <= 1)
return false;
for (int i = 2; i <= sqrt(num); i++)
if (num % i == 0)
return false;
return true;
}
2.线性筛优化
bool isprime_optimize(int n)
{
if (n <= 1)
return false;
if (n == 2 || n == 3)
return true;
if (n % 6 != 1 && n % 6 != 5) //6n+1或6n+56
return false;
for (int i = 5; i * i <= n; i += 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
3.a的立方 + b的立方 = c的立方
a 3 + b 3 = c 3 a^3 + b^3 = c^3 a3+b3=c3