CINTA作业二

本文介绍了Bezout定理的证明,并提供了GCD(最大公约数)算法的迭代实现以及EGCD算法的详细步骤。EGCD算法用于找到满足ar+bs=d的整数r、s和d。此外,还展示了一个批处理版本的GCD算法,该算法可以计算整数数组中所有数的最大公约数。
摘要由CSDN通过智能技术生成

CINTA作业二: GCD与EGCD

1、给出Bezout定理的完整证明。
2、实现GCD算法的迭代版本。
3、实现EGCD算法。输入:a、b两个整数,输出:r、s、d三个整数,满足ar + bs =d。
4、实现一种批处理版本的GCD算法,即,给定一个整数数组,输出其中所有整数的最大公因子。输入:一个整数数组a;输出:一个整数d,是a数组中所有整数的最大公因子。

  1. 证明:
    构造集合S={am+bn:m,n ∈ Z且am+bn>=0}
    取最小值:d=ax+by
    根据除法定理:a=qd+r,0<=r<d,q∈Z,所以r=a-qd=a-q(ax+by)=(1-qx)a+(-qy)b∈S,又因为d为S的最小值,所以r=0,则a|d,同理可得b|d.即d为a和b的公因子;
    设d‘为a和b的公因子,则有d=ax+by=d’(a’x+b’y).所以d’|d.
    所以d为a和b的最大公因子,即d=gcd(a,b)

int gcd(int a,int b)
{
	int temp;
	while(b!=0){
		temp=a%b;
		a=b;
		b=temp;
	}
	return a;
 } 
int egcd(int a,int b)
{
	int c[3];
	int r1 = 1, r2 = 0;
	int s1 = 0, s2 = 1;
	int temp1,temp2,temp3;
	while (a % b != 0)
	{
		int c = a % b;
		int d = a / b;
		temp1 = a;
		a = b;
		b = temp1 % a;
		temp2 = s1;
		s1 = s2;
		s2 = temp2 - d*s1;
		temp3 = r1;
		r1 = r2;
		r2 = temp3 - d*r1;
   }
   c[0]=r2;c[2]=s2;c[2]=b;
    return c;
 } 
void temp_gcd(int a[],int n)//n为数组长度
{
	int d = gcd(a[0], a[1]);
	for (int i = 2; i < n-1; i++)
	{
		d = gcd(d, a[i]);
	}
	return d;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值