YOLOv8知识蒸馏 | 目标检测的无损涨点

本文通过知识蒸馏技术提升YOLOv8n学生模型的性能。使用教师网络yosv8s,通过软标签和注意力图传递知识。详细步骤包括教师网络训练、损失函数修改、知识蒸馏训练,最终学生模型在教师模型的指导下表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8知识蒸馏

本文采用知识蒸馏的技术来训练模型。知识蒸馏是一种将复杂的模型知识传递给一个较简单模型的方法,从而提高简单模型的性能。而在知识蒸馏的过程中,主要有两种方式来传递知识:软标签和注意力图。软标签是一种将目标位置和类别信息以概率分布的形式传递给学生网络的方法,可以提供更丰富的信息。而注意力图则是一种将教师网络对目标的关注程度传递给学生网络的方式,可以帮助学生网络更好地学习目标的特征。
事前说明,知识蒸馏可用于自己魔改后的网络结构,但是需要保证教师网络比学生网络更大,且效果更好。本文将以私人睡岗数据集为例,选用yolov8n网络为学生网络,选用yosv8s网络为教师网络。

step 1.训练一版教师网络

step 2.损失函数修改

在上面代码下插入以下代码

#蒸馏关
#-------------------------------
# self.t_weights = False
# exe
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值