数值最优化-定理5-2

证明过程中用到了h也是严格凸的引论,在课后习题的5.4是有介绍的:

所以这么一来就牵扯出了有关凸函数和严格凸的内容:

凸函数的内容大概都知道,这个严格凸指的则是当x!=y时,一定是不等号,

对于\phi(x) = 1/2 x^TAx - x^Tb,我们把x换成\alpha x + (1-\alpha)y,可以得出:

\alpha \phi(x) +(1-\alpha)\phi(y) - \phi(\alpha x + (1-\alpha)y) = \newline \alpha (1-\alpha)(1/2(x-y)^TA(x-y))

所以如果没推导错的话,可以看到,由于A的正定的性质,在开区间(0,1)里,只有x=y会满足等号成立,其余全是>大于号。所以\phi是严格凸。

然后是对h(\sigma )也是严格凸的证明,也就是课后题5.4的解答:

其实也就是按着定义来:

h(\alpha \sigma_x + (1-\alpha)\sigma_y)= \newline \phi(x_0 + \alpha \sigma_{x0}p_0+...+ \alpha \sigma_{xk-1}p_{k-1} + (1-\alpha) \sigma_{y0}p_0+...+ \alpha \sigma_{yk-1}p_{k-1})) = \newline \phi(\alpha x_0 + \alpha \sigma_{x0}p_0+...+ \alpha \sigma_{xk-1}p_{k-1} + \newline (1-\alpha) x_0+(1-\alpha) \sigma_{y0}p_0+...+ (1-\alpha) \sigma_{yk-1}p_{k-1}))

最后一步把x_0拆成了两部分,我们就可以提出公共项\alpha和(1-\alpha)

然后就变成了:\phi(\alpha x' + (1-\alpha )y'),进而就可以利用\phi本身的严格凸推导出h的严格凸了。

主要思想还是拆x那里。

然后我们才可以去看定理5.3的具体证明:

当然还要涉及一点,如果是凸函数的话,那么梯度为0的点,一定是全局最优解:

书上定理2.5有说这个事。

然后开始证明定理5.2

定理说了两件事:

第一,用共轭方向算法5.6,5.7生成的那一组x_k会保证5.11成立,也就是r_k总是和之前所有的p_k正交;

第二,每次生成的x_k都会保证,这时的\phi(x_k)是 5.12式张成空间的最小值;

书上是先证得第二个,我们还是按先第一个再第二个吧,

首先,由于5.6,5.7的计算\alpha_k的方法其实是通过\partial \phi(x_k + \alpha p_k)/ \partial \alpha _k=0计算出来的,因此有:

\partial \phi(x_0 +\alpha_0 p_0)/\partial \alpha_0 = \newline r_1^Tp_0= 0

这个r_1p_0=0就是我们将要使用数学归纳法的其实条件,

然后数学归纳法的常规流程,先假设k-1成立,再证明k成立,这里就不多复述了:

然后是对第二个的证明,逻辑上还是挺难理解的。

首先是书上说了一句,通过链式法则可以得到,在那里就想了很久:

\partial h(\sigma^*)/\partial \sigma_i = \sum_k \partial \phi/\partial x_k * \partial x_k / \partial \sigma_i = \bigtriangledown \phi^Tp_i

然后是逻辑理解上,最后的体会就是

1 \phi在那个张成的空间上有极小值,

2 h 在\sigma上有极小值,

3 r^Tp=0

这仨个等式就是彼此的充要条件,书上那一段文字说的大概就是这件事。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值