Number Sequence
Problem Description
Given two sequences of numbers : a[1], a[2], … , a[N], and b[1], b[2], … , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], … , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], … , a[N]. The third line contains M integers which indicate b[1], b[2], … , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
#include <stdio.h>
int a[1010000],b[1010000];
int next[1010000]={-1},ans=-1,n,k,m;
void fun()
{
int i=-1,j=0;
while(j<m)
{
if(i==-1||b[i]==b[j])
{
i++,j++;
next[j]=i;
}
else i=next[i];
}
}
void kmp()
{
int i=0,j=0;
fun();
while(i<n)
{
if(j==-1||a[i]==b[j])
{
i++,j++;
}
else j=next[j];
if(j>=m)
{
ans=i+1-m;
break;
}
}
}
int main()
{
scanf("%d",&k);
while(k--)
{
int i;
ans=-1;
scanf("%d%d",&n,&m);
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
for(i=0;i<m;i++)
{
scanf("%d",&b[i]);
}
kmp();
printf("%d\n",ans);
}
}
本文介绍了一个数列匹配问题,该问题旨在寻找两个数列间的一个特定起始位置,使得一个数列的子序列能完全匹配另一个数列。通过使用KMP算法进行高效搜索,文章详细解释了算法的实现细节,并提供了完整的C语言代码示例。
502

被折叠的 条评论
为什么被折叠?



