CAPM模型

CAPM模型 – 潘登同学的Quant笔记

资产定价问题及CAPM

Asset pricing的核心问题是
X → P [ E ( r ~ ) ] X\to P[E(\tilde{r})] XP[E(r~)]

除了future payoff- X X X对问题很重要,要求的折现率r也很重要; 在资产定价中,往往不是特别重视future payoff怎么获得(一般都是预期),而是关注r的值(因为预期是千差万别的,而贴现率是实实在在的),CAPM模型就是为了解决r而建立的模型;

Markowitz于1952年portfolio selection的论文,提出了CAMP模型,本质上是一个数学上的优化问题(Mean-Variance Analysis),但是却掀起了现代金融学的第一次革命;

一些事实与假设

  • ex-ante rate of return: 事前回报率(=期望回报率) 往往是未知的,但是可以预期的
  • ex-post rate of return: 事后回报率 在投资结束时计算的回报率

我们想确定的r肯定是事前回报率,但是我们观察到的只有事后回报率,所以我们会将其期望回报率用事后回报率的均值代替; (我认为这是一个比较强的假设,因为这个假设暗含了过去发生的事再未来还会发生)

  • Survivorship Bias: 幸存者偏差, 过去的数据并不能将资产的所有回报都显示出来,可能有极小的概率发生巨大的亏损,而一旦发生巨大亏损,这个资产便离开市场,留下来的要么是不存在巨大亏损的,要么是还未观测到的。所以将事后回报率的均值当做事前回报率还需谨慎;

运用Mean-Variance进行分析

投资者的无差异曲线

假设消费者的效用函数为 U ( E ( r ) , σ r ) U(E(r),\sigma_r) U(E(r),σr),显然 ∂ U ∂ E ( r ) > 0 , ∂ U ∂ σ r < 0 \frac{\partial{U}}{\partial{E(r)}}>0,\frac{\partial{U}}{\partial{\sigma_r}}<0 E(r)U>0,σrU<0
运用两个基本事实来构造无差异曲线

  • 边际效用递减, ∂ 2 U ∂ E ( r ) 2 < 0 \frac{\partial^2{U}}{\partial{E(r)^2}}<0 E(r)22U<0
  • 边际成本递增, ∂ 2 U ∂ σ r 2 < 0 \frac{\partial^2{U}}{\partial{\sigma_r^2}}<0 σr22U<0

如图所示:
在这里插入图片描述

下面证明无差异曲线是如上图所示的形状

  • 斜率为正
    A → B A\to B AB
    △ u = 0 = △ E ( r ) ∂ u ∂ E ( r ) + △ σ r ∂ u ∂ σ r ⇒ △ E ( r ) △ σ r = − ∂ u ∂ σ r / ∂ u ∂ E ( r ) > 0 当 △ → 0 , △ = d , d E ( r ) d σ r > 0 \triangle u = 0 = \triangle E(r)\frac{\partial u}{\partial E(r)} + \triangle \sigma_r\frac{\partial u}{\partial \sigma_r} \\ \Rightarrow \frac{\triangle E(r)}{\triangle \sigma_r} = -\frac{\partial u}{\partial \sigma_r} / \frac{\partial u}{\partial E(r)} > 0\\ 当\triangle \to 0, \triangle = d, \frac{d E(r)}{d \sigma_r} > 0 u=0=E(r)E(r)u+σrσruσrE(r)=σru/E(r)u>00,=d,dσrdE(r)>0
  • 凸函数 ⇔ \Leftrightarrow 二阶导大于0 ⇔ \Leftrightarrow 一阶导递增
    d E ( r ) d σ r = − ∂ u ∂ σ r / ∂ u ∂ E ( r ) 当 σ ↑ , − ∂ u ∂ σ r ↑ ; E ( r ) ↑ , − ∂ u ∂ E ( r ) ↓ ⇒ d E ( r ) d σ r ↑ , 一阶导递增 \frac{d E(r)}{d \sigma_r} = -\frac{\partial u}{\partial \sigma_r} / \frac{\partial u}{\partial E(r)} \\ 当\sigma \uparrow, -\frac{\partial u}{\partial \sigma_r} \uparrow; E(r) \uparrow,-\frac{\partial u}{\partial E(r)} \downarrow \Rightarrow \frac{d E(r)}{d \sigma_r} \uparrow,一阶导递增 dσrdE(r)=σru/E(r)uσ,σru;E(r),E(r)u↓⇒dσrdE(r),一阶导递增

而一般常用的效用函数为
U = E ( r ) − A σ 2 U = E(r) - A\sigma^2 U=E(r)Aσ2

一个风险资产与一个无风险资产的组合

无风险资产风险资产
收益率 r f r_f rf r s ~ \tilde{r_s} rs~
标准差0 σ s \sigma_s σs
组合权重 1 − w 1-w 1w w w w
  • Mean:
    r p ˉ = E [ ( 1 − w ) r f + w r s ~ ] = ( 1 − w ) r f + w r s ˉ = r f + w ( r s ˉ − r f ) ⇒ r p ˉ = r f + σ p σ s ( r s ˉ − r f ) \begin{aligned} \bar{r_p} &= E[(1-w)r_f+w\tilde{r_s}] \\ &=(1-w)r_f + w\bar{r_s} \\ &= r_f + w(\bar{r_s}-r_f) \end{aligned} \Rightarrow \bar{r_p} =r_f + \frac{\sigma_p}{\sigma_s}(\bar{r_s}-r_f) rpˉ=E[(1w)rf+wrs~]=(1w)rf+wrsˉ=rf+w(rsˉrf)rpˉ=rf+σsσp(rsˉrf)

  • Variance:
    σ p 2 = E [ ( 1 − w ) r f + w r s ~ − r p ˉ ] 2 = w 2 σ s 2 ⇒ w = σ p σ s \begin{aligned} \sigma_p^2 &= E[(1-w)r_f + w\tilde{r_s}-\bar{r_p}]^2 \\ &= w^2 \sigma_s^2 \\ \end{aligned} \Rightarrow w = \frac{\sigma_p}{\sigma_s} σp2=E[(1w)rf+wrs~rpˉ]2=w2σs2w=σsσp

画在图上就是:
在这里插入图片描述

两个风险资产的组合

风险资产另一个风险资产
收益率 r 1 ~ \tilde{r_1} r1~ r 2 ~ \tilde{r_2} r2~
标准差 σ 1 \sigma_1 σ1 σ 2 \sigma_2 σ2
组合权重 w w w 1 − w 1-w 1w
  • Mean:
    r p ˉ = E [ w r 1 ~ + ( 1 − w ) r 2 ~ ] = w r 1 ˉ + ( 1 − w ) r 2 ˉ \begin{aligned} \bar{r_p} &= E[w\tilde{r_1} + (1-w)\tilde{r_2}] \\ &=w\bar{r_1} + (1-w)\bar{r_2} \\ \end{aligned} rpˉ=E[wr1~+(1w)r2~]=wr1ˉ+(1w)r2ˉ

  • Variance:
    σ p 2 = E [ w r 1 ~ + ( 1 − w ) r 2 ~ − r p ˉ ] 2 = w 2 σ 1 2 + ( 1 − w ) 2 σ 2 2 + 2 w ( 1 − w ) C o v 1 , 2 = w 2 σ 1 2 + ( 1 − w ) 2 σ 2 2 + 2 w ( 1 − w ) σ 1 σ 2 ρ 1 , 2 \begin{aligned} \sigma_p^2 &= E[w\tilde{r_1} + (1-w)\tilde{r_2}-\bar{r_p}]^2 \\ &= w^2 \sigma_1^2 + (1-w)^2 \sigma_2^2 + 2w(1-w)Cov_{1,2}\\ &= w^2 \sigma_1^2 + (1-w)^2 \sigma_2^2 + 2w(1-w)\sigma_1\sigma_2\rho_{1,2}\\ \end{aligned} σp2=E[wr1~+(1w)r2~rpˉ]2=w2σ12+(1w)2σ22+2w(1w)Cov1,2=w2σ12+(1w)2σ22+2w(1w)σ1σ2ρ1,2

画在图上就是:
在这里插入图片描述

下证其曲线形状:

  1. ρ 1 , 2 = 1 \rho_{1,2}=1 ρ1,2=1时,斜率为正
    E ( r p ) = w r 1 ˉ + ( 1 − w ) r 2 ˉ σ p = w σ 1 + ( 1 − w ) σ 2 d E ( r p ) d σ p = d E ( r p ) / d w d σ p / d w = r 1 ˉ − r 2 ˉ σ 1 − σ 2 > 0 \begin{aligned} E(r_p) &= w\bar{r_1} + (1-w)\bar{r_2} \\ \sigma_p &= w\sigma_1 + (1-w) \sigma_2 \\ \frac{dE(r_p)}{d\sigma_p} &= \frac{dE(r_p)/dw}{d\sigma_p/dw} = \frac{\bar{r_1} - \bar{r_2}}{\sigma_1-\sigma_2}>0 \end{aligned} E(rp)σpdσpdE(rp)=wr1ˉ+(1w)r2ˉ=wσ1+(1w)σ2=dσp/dwdE(rp)/dw=σ1σ2r1ˉr2ˉ>0
  2. ρ 1 , 2 = − 1 \rho_{1,2}=-1 ρ1,2=1时,为分段函数
    E ( r p ) = w r 1 ˉ + ( 1 − w ) r 2 ˉ σ p = ∣ w σ 1 − ( 1 − w ) σ 2 ∣ 设 W ∗ 为临界值 , w ∗ σ 1 − ( 1 − w ∗ ) σ 2 = 0 ⇒ w ∗ = σ 2 σ 1 + σ 2 σ p = { w σ 1 − ( 1 − w ) σ 2 , w > w ∗ 0 , w = w 8 − w σ 1 + ( 1 − w ) σ 2 , w < w ∗ d E ( r p ) d σ p = { d E ( r p ) / d w d σ p / d w = r 1 ˉ − r 2 ˉ σ 1 + σ 2 > 0 , w > w ∗ E ( r p ) = σ 2 σ 1 + σ 2 σ 1 + σ 2 σ 1 + σ 2 σ 2 = 2 σ 1 σ 2 σ 1 + σ 2 , w = w ∗ d E ( r p ) / d w d σ p / d w = − r 1 ˉ − r 2 ˉ σ 1 + σ 2 < 0 , w < w ∗ \begin{aligned} E(r_p) &= w\bar{r_1} + (1-w)\bar{r_2} \\ \sigma_p &= |w\sigma_1 - (1-w) \sigma_2| \\ 设W^*为临界值,& w^*\sigma_1 - (1-w^*) \sigma_2 = 0 \Rightarrow w^* = \frac{\sigma_2}{\sigma_1+\sigma_2}\\ \sigma_p &= \begin{cases} w\sigma_1 - (1-w) \sigma_2, &w>w^* \\ 0, &w=w^8 \\ -w\sigma_1 + (1-w) \sigma_2,&w<w^* \\ \end{cases} \\ \frac{dE(r_p)}{d\sigma_p} &=\begin{cases} \frac{dE(r_p)/dw}{d\sigma_p/dw} = \frac{\bar{r_1} - \bar{r_2}}{\sigma_1+\sigma_2}>0, &w>w^* \\ E(r_p) = \frac{\sigma_2}{\sigma_1+\sigma_2}\sigma_1 + \frac{\sigma_2}{\sigma_1+\sigma_2} \sigma_2 = \frac{2\sigma_1\sigma_2}{\sigma_1+\sigma_2},&w=w^* \\ \frac{dE(r_p)/dw}{d\sigma_p/dw} = -\frac{\bar{r_1} - \bar{r_2}}{\sigma_1+\sigma_2}<0, &w<w^* \\ \end{cases} \end{aligned} E(rp)σpW为临界值,σpdσpdE(rp)=wr1ˉ+(1w)r2ˉ=wσ1(1w)σ2wσ1(1w)σ2=0w=σ1+σ2σ2= wσ1(1w)σ2,0,wσ1+(1w)σ2,w>ww=w8w<w= dσp/dwdE(rp)/dw=σ1+σ2r1ˉr2ˉ>0,E(rp)=σ1+σ2σ2σ1+σ1+σ2σ2σ2=σ1+σ22σ1σ2,dσp/dwdE(rp)/dw=σ1+σ2r1ˉr2ˉ<0,w>ww=ww<w
  3. ρ 1 , 2 ∈ ( − 1 , 1 ) \rho_{1,2}\in(-1,1) ρ1,2(1,1)时,最小方差组合的方差小于 σ 2 \sigma_2 σ2,且曲线为凸函数
    σ p 2 = w 2 σ 1 2 + ( 1 − w ) 2 σ 2 2 + 2 w ( 1 − w ) σ 1 σ 2 ρ 1 , 2 求 W ∗ 使得 σ p 最小 ⇔ σ p 2 最小 f ( w ) = w 2 σ 1 2 + ( 1 − w ) 2 σ 2 2 + 2 w ( 1 − w ) σ 1 σ 2 ρ 1 , 2 f ′ ( w ) = 2 w σ 1 2 + 2 ( 1 − w ) σ 2 2 + 2 ( 1 − w ) σ 1 σ 2 ρ 1 , 2 − 2 w σ 1 σ 2 ρ 1 , 2 = 0 ⇒ w ∗ = σ 2 2 − σ 1 σ 2 ρ 1 , 2 σ 1 2 + σ 2 2 − 2 σ 1 σ 2 ρ 1 , 2 f ′ ′ ( w ∗ ) = 2 σ 1 2 + 2 σ 2 2 − 4 σ 1 σ 2 ρ 1 , 2 > 2 ( σ 1 − σ 2 ) 2 > 0 ⇒ σ p 在 w ∗ 处取得最小值 下证: σ p ∗ < σ 2 σ p ∗ 2 = w ∗ 2 σ 1 2 + ( 1 − w ∗ ) 2 σ 2 2 + 2 w ∗ ( 1 − w ∗ ) σ 1 σ 2 ρ 1 , 2 = ( 1 − ρ 1 , 2 2 ) σ 1 2 σ 2 2 σ 1 2 + σ 2 2 − 2 σ 1 σ 2 ρ 1 , 2 < σ 2 2 下证:曲线是凸函数 \sigma_p^2 = w^2 \sigma_1^2 + (1-w)^2 \sigma_2^2 + 2w(1-w)\sigma_1\sigma_2\rho_{1,2} \\ 求W^*使得\sigma_p最小 \Leftrightarrow \sigma_p^2 最小 \\ \begin{aligned} f(w) &= w^2 \sigma_1^2 + (1-w)^2 \sigma_2^2 + 2w(1-w)\sigma_1\sigma_2\rho_{1,2} \\ f'(w)&= 2w \sigma_1^2 + 2(1-w) \sigma_2^2 + 2(1-w)\sigma_1\sigma_2\rho_{1,2} - 2w\sigma_1\sigma_2\rho_{1,2} = 0 \\ \Rightarrow &w^* = \frac{\sigma_2^2-\sigma_1\sigma_2\rho_{1,2}}{\sigma_1^2+\sigma_2^2-2\sigma_1\sigma_2\rho_{1,2}} \\ f''(w^*) &= 2\sigma_1^2 + 2\sigma_2^2 - 4\sigma_1\sigma_2\rho_{1,2} > 2(\sigma_1 - \sigma_2)^2 > 0\\ \Rightarrow &\sigma_p 在w^*处取得最小值 \\ 下证:\sigma_p^{*} < \sigma_2 \\ \sigma_p^{*2} &= w^{*2} \sigma_1^2 + (1-w^*)^2 \sigma_2^2 + 2w^*(1-w^*)\sigma_1\sigma_2\rho_{1,2} \\ &= \frac{(1-\rho_{1,2}^2)\sigma_1^2\sigma_2^2}{\sigma_1^2+ \sigma_2^2-2\sigma_1\sigma_2\rho_{1,2}} < \sigma_2^2 \\ 下证:曲线是凸函数\\ \end{aligned} σp2=w2σ12+(1w)2σ22+2w(1w)σ1σ2ρ1,2W使得σp最小σp2最小f(w)f(w)f′′(w)下证:σp<σ2σp2下证:曲线是凸函数=w2σ12+(1w)2σ22+2w(1w)σ1σ2ρ1,2=2wσ12+2(1w)σ22+2(1w)σ1σ2ρ1,22wσ1σ2ρ1,2=0w=σ12+σ222σ1σ2ρ1,2σ22σ1σ2ρ1,2=2σ12+2σ224σ1σ2ρ1,2>2(σ1σ2)2>0σpw处取得最小值=w2σ12+(1w)2σ22+2w(1w)σ1σ2ρ1,2=σ12+σ222σ1σ2ρ1,2(1ρ1,22)σ12σ22<σ22
w w w w < w ∗ w<w^* w<w W ∗ W^* W w > w ∗ w>w^* w>w
f’(w)-0+
f’'(w)+++
f(w) ↘ \searrow 极小值 ↗ \nearrow
  • w > w ∗ w>w^* w>w时:
    ∂ E ( r p ) ∂ σ p 的符号 ⇛ ∂ E ( r p ) ∂ σ p 2 的符号 ∂ E ( r p ) ∂ σ p 2 = ∂ E ( r p ) / ∂ w f ′ ( w ) = r 1 ˉ − r 2 ˉ f ′ ( w ) > 0 ∴ 从 M V P 点到 A 1 斜率为正 ∂ ∂ E ( r p ) ∂ σ p 2 ∂ σ p 2 = ∂ ∂ E ( r p ) ∂ σ p 2 / ∂ w ∂ σ p 2 / ∂ w = − r 1 ˉ − r 2 ˉ f ′ ( w ) f ′ ′ ( w ) f ′ ( w ) < 0 ∴ 从 M V P 点到 A 1 为凸函数 \begin{aligned} \frac{\partial{E(r_p)}}{\partial{\sigma_p}}&的符号 \Rrightarrow \frac{\partial{E(r_p)}}{\partial{\sigma_p^2}}的符号 \\ \frac{\partial{E(r_p)}}{\partial{\sigma_p^2}} &= \frac{\partial{E(r_p)}/\partial{w}}{f'(w)} = \frac{\bar{r_1} - \bar{r_2}}{f'(w)} > 0 \\ \therefore 从MVP&点到A_1斜率为正 \\ \frac{\partial\frac{\partial{E(r_p)}}{\partial{\sigma_p^2}}}{\partial{\sigma_p^2}}&=\frac{\partial\frac{\partial{E(r_p)}}{\partial{\sigma_p^2}}/\partial{w}}{\partial{\sigma_p^2}/\partial{w}} = \frac{-\frac{\bar{r_1} - \bar{r_2}}{f'(w)}f''(w)}{f'(w)} <0 \\ \therefore 从MVP&点到A_1为凸函数 \\ \end{aligned} σpE(rp)σp2E(rp)MVPσp2σp2E(rp)MVP的符号σp2E(rp)的符号=f(w)E(rp)/w=f(w)r1ˉr2ˉ>0点到A1斜率为正=σp2/wσp2E(rp)/w=f(w)f(w)r1ˉr2ˉf′′(w)<0点到A1为凸函数
  • 同理,当 w < w ∗ w<w^* w<w时:
    从 M V P 点到 A 2 斜率为负 从 M V P 点到 A 2 为凸函数 从MVP点到A_2斜率为负 \\ 从MVP点到A_2为凸函数 \\ MVP点到A2斜率为负MVP点到A2为凸函数

多个风险组合

因为每两个资产组合可以看成一个新的资产,那么n个资产组合就可以看成1个资产与n-1个资产组合的形式,也就是两个风险资产的组合(资产组合也是一个新资产),所以跟上面两个风险资产组合的分析无异;

将多个风险组合的所有可行点描述在M-V图中,便得到了投资者的投资可行集,将投资可行集上最优的点集(efficiency frontier)与投资者的无差异曲线相切,便得到了投资者投资风险资产的选择;

而得到最优点集的标准是E-V准则
均方有效准则: { E ( r p ) 一定时, σ p 最小 σ p 一定时, E ( r p ) 最大 均方有效准则: \begin{cases} E(r_p)一定时,&\sigma_p最小\\ \sigma_p一定时,&E(r_p)最大\\ \end{cases} 均方有效准则:{E(rp)一定时,σp一定时,σp最小E(rp)最大

画在图上就是:
在这里插入图片描述

无风险资产与多个风险资产的组合

无风险资产与风险资产的组合永远是一条直线,通过无风险资产,最优的投资可行集从双曲线变成了一个射线,称之为Capital Market Line(也称为均方有效的风险资产与无风险资产的资产组合集); 切点为市场组合M,射线方程为:

r ˉ − r f = r m ˉ − r f σ M σ \bar{r} - r_f = \frac{\bar{r_m}-r_f}{\sigma_M}\sigma rˉrf=σMrmˉrfσ

画在图上就是:
在这里插入图片描述

从图中可以看出CML下的投资者的无差异曲线严格优于efficient frontier的无差异曲线,所以投资者会选择市场组合M与无风险资产来实现自己的效用最大化;

这里就可以看出Markowitz的理论与传统理论的不同了

  • 传统理论认为,风险偏好低的投资者应该买低风险的资产,风险偏好高的投资者应该买高风险的资产;
  • 而markowitz认为所有投资者都买同样的资产-市场组合,只是通过无风险资产与风险资产的配比来实现自己的效用最大化;

Mutal Fund Separation Theorem

由上面的结论显而易见的能得到共同基金分离定理

  1. 基金经理构造市场组合M(不需要考虑风险偏好)
  2. 投资者根据自己的风险偏好构造特殊资产组合 max ⁡ w U ( r f , r m , σ m , w ) \max_{w} U(r_f,r_m,\sigma_m,w) maxwU(rf,rm,σm,w)

Capital Asset pricing model(CAPM)的推导

基本假设

  • 市场假设:
    • No transaction cost
    • No taxes
    • Perfect competition
    • Infinitely divisiable(投资可以无限细分)
  • 投资者假设:
    • Mean-Variance Perference(持有相同的市场组合)
    • No limits on short shorting
    • comment belief(相同预期)

基于效用函数的推导

  • 投资者的效用函数 U ( r ) = E ( r ) − A σ 2 ( r ) U(r) = E(r) - A\sigma^2(r) U(r)=E(r)Aσ2(r)(A巧好使得投资者的最优组合是市场组合M,只是方便推导)
  • 假设投资者再构建一个组合,这个组合至少不优于市场组合M
市场组合另一个资产
收益率 r M ~ \tilde{r_M} rM~ r i ~ \tilde{r_i} ri~
标准差 σ M \sigma_M σM σ i \sigma_i σi
组合权重 1 − w 1-w 1w w w w

u ( r p ) = u [ w r i + ( 1 − w ) r M ] = E [ w r i + ( 1 − w ) r M ] − A σ 2 [ w r i + ( 1 − w ) r M ] = w E [ r i ] + ( 1 − w ) E [ r M ] − A [ w 2 σ i 2 + ( 1 − w ) 2 σ M 2 + 2 w ( 1 − w ) σ i , M ] = w E [ r i ] + ( 1 − w ) E [ r M ] − A w 2 ( σ i 2 + σ M 2 − 2 σ i , M ) − 2 A w ( σ i , M − σ M 2 ) 计算 从市场组合转为组合 p 的边际效用 u ( r p ) d w = E ( r i ) − E ( r M ) − 2 A w ( σ i 2 + σ M 2 − 2 σ i , M ) − 2 A ( σ i , M − σ M 2 ) 因为 市场组合是投资者的最优组合,所以在 w = 0 处边际效用为 0 u ( r p ) d w ∣ w = 0 = E ( r i ) − E ( r M ) − 2 A ( σ i , M − σ M 2 ) = 0 ( ∗ ) 上式 对任一资产 i 都成立,显然对无风险资产也成立 r f − E ( r M ) + 2 A σ M 2 = 0 ∴ A = E ( r M ) − r f 2 σ M 2 将 A 带回 ( ∗ ) 式 E ( r i ) − E ( r M ) − E ( r M ) − r f σ M 2 ( σ i , M − σ M 2 ) = 0 ⇒ E ( r i ) − r f = σ i , M σ M 2 [ E ( r M ) − r f ] 定义 β i = σ i , M σ M 2 , 则上式变为 C A P M E ( r i ) − r f = β i [ E ( r M ) − r f ] \begin{aligned} u(r_p) &=u[wr_i+(1-w)r_M] \\ &= E[wr_i+(1-w)r_M] - A\sigma^2[wr_i+(1-w)r_M]\\ &= wE[r_i]+(1-w)E[r_M] - A[w^2\sigma_i^2+(1-w)^2\sigma^2_M+2w(1-w)\sigma_{i,M}]\\ &= wE[r_i]+(1-w)E[r_M] - Aw^2(\sigma_i^2+\sigma^2_M-2\sigma_{i,M})-2Aw(\sigma_{i,M}-\sigma_{M}^2)\\ 计算&从市场组合转为组合p的边际效用\\ \frac{u(r_p)}{dw} &= E(r_i) - E(r_M) - 2Aw(\sigma_i^2+\sigma^2_M-2\sigma_{i,M})-2A(\sigma_{i,M}-\sigma_{M}^2)\\ 因为&市场组合是投资者的最优组合,所以在w=0处边际效用为0 \\ \frac{u(r_p)}{dw} |_{w=0} &= E(r_i) - E(r_M) -2A(\sigma_{i,M}-\sigma_{M}^2)=0 \quad (*)\\ 上式&对任一资产i都成立,显然对无风险资产也成立 \\ &r_f-E(r_M) +2A\sigma_{M}^2=0\\ \therefore A &= \frac{E(r_M)-r_f}{2\sigma_{M}^2} \\ 将A&带回(*)式\\ &E(r_i) - E(r_M) -\frac{E(r_M)-r_f}{\sigma_{M}^2}(\sigma_{i,M}-\sigma_{M}^2)=0\\ \Rightarrow & E(r_i)-r_f = \frac{\sigma_{i,M}}{\sigma_{M}^2}[E(r_M)-r_f] \\ 定义&\beta_i = \frac{\sigma_{i,M}}{\sigma_{M}^2},则上式变为CAPM\\ & E(r_i)-r_f = \beta_i[E(r_M)-r_f] \\ \end{aligned} u(rp)计算dwu(rp)因为dwu(rp)w=0上式AA定义=u[wri+(1w)rM]=E[wri+(1w)rM]Aσ2[wri+(1w)rM]=wE[ri]+(1w)E[rM]A[w2σi2+(1w)2σM2+2w(1w)σi,M]=wE[ri]+(1w)E[rM]Aw2(σi2+σM22σi,M)2Aw(σi,MσM2)从市场组合转为组合p的边际效用=E(ri)E(rM)2Aw(σi2+σM22σi,M)2A(σi,MσM2)市场组合是投资者的最优组合,所以在w=0处边际效用为0=E(ri)E(rM)2A(σi,MσM2)=0()对任一资产i都成立,显然对无风险资产也成立rfE(rM)+2AσM2=0=2σM2E(rM)rf带回()E(ri)E(rM)σM2E(rM)rf(σi,MσM2)=0E(ri)rf=σM2σi,M[E(rM)rf]βi=σM2σi,M,则上式变为CAPME(ri)rf=βi[E(rM)rf]

基于组合构建的推导

根据CML的特点,所有投资者都会选择同一个市场组合M,不能存在比M更优的组合,基于这一点来推导CAPM

  • 假设投资者再构建一个组合,这个组合至少不优于市场组合
市场组合另一个风险资产
收益率 r M ~ \tilde{r_M} rM~ r i ~ \tilde{r_i} ri~
标准差 σ M \sigma_M σM σ i \sigma_i σi
组合权重 1 − w 1-w 1w w w w

这个新组合有如下特点

  • 经过点M
  • 在Efficient frontier内
  • 与Efficient frontier相切与点M
    在这里插入图片描述

E ( r p ) = E [ w r i ~ + ( 1 − w ) r M ~ ] = w [ E ( r i ~ ) − E ( r M ~ ) ] + E ( r M ~ ) σ 2 ( r p ) = w 2 σ i 2 + ( 1 − w ) 2 σ M 2 + 2 w ( 1 − w ) σ i , M d E ( r p ) d σ ( r p ) ∣ w = 0 = d E ( r p ) / d w d σ ( r p ) / d w ∣ w = 0 = E ( r i ) − E ( r M ) 2 w σ i 2 − 2 ( 1 − w ) σ M 2 + 2 ( 1 − 2 w ) σ i , M 2 σ p ∣ w = 0 ( d σ p 2 d w = 2 σ p d σ p d w ) = E ( r i ) − E ( r M ) w σ i 2 − ( 1 − w ) σ M 2 + ( 1 − 2 w ) σ i , M σ p ∣ w = 0 = E ( r i ) − E ( r M ) − σ M 2 + σ i , M σ m 利用 斜率与 S M L 相等 E ( r i ) − E ( r M ) − σ M 2 + σ i , M σ m = E ( r m ) − r f σ M ⇒ E ( r i ) − r f = σ i , M σ M 2 [ E ( r M ) − r f ] 定义 β i = σ i , M σ M 2 , 则上式变为 C A P M E ( r i ) − r f = β i [ E ( r M ) − r f ] \begin{aligned} E(r_p) &= E[w\tilde{r_i}+(1-w)\tilde{r_M}]\\ &=w[E(\tilde{r_i})-E(\tilde{r_M})] + E(\tilde{r_M})\\ \sigma^2(r_p) &= w^2 \sigma_i^2 + (1-w)^2 \sigma_M^2 + 2w(1-w)\sigma_{i,M}\\ \frac{dE(r_p)}{d\sigma(r_p)}|_{w=0} &=\frac{dE(r_p)/dw}{d\sigma(r_p)/dw}|_{w=0} \\ &=\frac{E(r_i)-E(r_M)}{\frac{2w \sigma_i^2 - 2(1-w) \sigma_M^2 + 2(1-2w)\sigma_{i,M}}{2\sigma_p}}|_{w=0} \qquad (\frac{d\sigma_p^2}{dw} = 2\sigma_p\frac{d\sigma_p}{dw})\\ &= \frac{E(r_i)-E(r_M)}{w \sigma_i^2 - (1-w) \sigma_M^2 + (1-2w)\sigma_{i,M}}\sigma_p|_{w=0}\\ &=\frac{E(r_i)-E(r_M)}{ - \sigma_M^2 + \sigma_{i,M}}\sigma_m \\ 利用&斜率与SML相等\\ \frac{E(r_i)-E(r_M)}{ - \sigma_M^2 + \sigma_{i,M}}\sigma_m& = \frac{E(r_m)-r_f}{\sigma_M} \\ \Rightarrow & E(r_i)-r_f = \frac{\sigma_{i,M}}{\sigma_{M}^2}[E(r_M)-r_f] \\ 定义&\beta_i = \frac{\sigma_{i,M}}{\sigma_{M}^2},则上式变为CAPM\\ & E(r_i)-r_f = \beta_i[E(r_M)-r_f] \\ \end{aligned} E(rp)σ2(rp)dσ(rp)dE(rp)w=0利用σM2+σi,ME(ri)E(rM)σm定义=E[wri~+(1w)rM~]=w[E(ri~)E(rM~)]+E(rM~)=w2σi2+(1w)2σM2+2w(1w)σi,M=dσ(rp)/dwdE(rp)/dww=0=2σp2wσi22(1w)σM2+2(12w)σi,ME(ri)E(rM)w=0(dwdσp2=2σpdwdσp)=wσi2(1w)σM2+(12w)σi,ME(ri)E(rM)σpw=0=σM2+σi,ME(ri)E(rM)σm斜率与SML相等=σME(rm)rfE(ri)rf=σM2σi,M[E(rM)rf]βi=σM2σi,M,则上式变为CAPME(ri)rf=βi[E(rM)rf]

这条CAPM得出的方程称为Securities Market line(SML),SML是给资产定价的曲线,在线上的点表示处于均衡转态,不在线上表示不均衡;

在这里插入图片描述

SML与CML的区别

{ C M L : E ( r i ) = r f + σ i σ m [ E ( r m ) − r f ] S M L : E ( r i ) = r f + β i [ E ( r m ) − r f ] \begin{cases} CML: E(r_i) = r_f + \frac{\sigma_i}{\sigma_m}[E(r_m)-r_f] \\ SML: E(r_i) = r_f + \beta_i[E(r_m)-r_f] \\ \end{cases} {CML:E(ri)=rf+σmσi[E(rm)rf]SML:E(ri)=rf+βi[E(rm)rf]

  • 共同形式: Expected rate of return = risk free + risk premium(=measure of risk × \times × price of risk)
  • SML与CML都是正确的,为什么measure of risk不同?
    • SML对所有资产(包括无风险资产)都成立
    • CML只对部分资产成立(只对那些与市场组合有相同sharpe ratio的资产成立)

(资产A在SML上但不在CML上)

CAPM的应用及局限

Estimate of CAPM

r i ~ ≜ r i − r f r m ~ ≜ r m − r f S M L : r i ~ = β i r m ~ 计量写法 : r i ~ = α i + β i r m ~ + ϵ i ~ O L S 估计 ⇒ β i ^ = σ i , m σ m 2 V a r ( r i ~ ) = V a r ( α i + β i r m ~ + ϵ i ~ ) = β i 2 V a r ( r m ~ ) + V a r ( ϵ i ~ ) + 2 β i C o v ( r i ~ , r m ~ ) = β i 2 σ m 2 + σ ϵ 2 \tilde{r_i} \triangleq r_i - r_f\\ \tilde{r_m} \triangleq r_m - r_f\\ SML: \tilde{r_i} = \beta_i \tilde{r_m}\\ 计量写法: \tilde{r_i} = \alpha_i + \beta_i\tilde{r_m}+\tilde{\epsilon_i}\\ OLS估计 \Rightarrow \hat{\beta_i} = \frac{\sigma_{i,m}}{\sigma_m^2}\\ \begin{aligned} Var(\tilde{r_i}) &= Var(\alpha_i + \beta_i\tilde{r_m}+\tilde{\epsilon_i}) \\ &= \beta_i^2Var(\tilde{r_m}) + Var(\tilde{\epsilon_i}) + 2\beta_iCov(\tilde{r_i},\tilde{r_m}) \\ &= \beta_i^2\sigma_m^2 + \sigma^2_{\epsilon}\\ \end{aligned} ri~rirfrm~rmrfSML:ri~=βirm~计量写法:ri~=αi+βirm~+ϵi~OLS估计βi^=σm2σi,mVar(ri~)=Var(αi+βirm~+ϵi~)=βi2Var(rm~)+Var(ϵi~)+2βiCov(ri~,rm~)=βi2σm2+σϵ2
对于 V a r ( r i ~ ) Var(\tilde{r_i}) Var(ri~)的结果,前者是systematic risk,后者是idiosyncrasy risk;

CAPM的局限

  1. Partial Equilibrium(只是在Capital market下的Equilibrium)
  2. static model(只考虑一期)
  3. Single index model(个体回报只与市场组合有关)
CAPM模型(Capital Asset Pricing Model)是用于评估资产组合的风险和收益的经济模型。在Stata中,可以使用CAPM模型来分析资产的预期收益率和风险。下面以使用Stata进行CAPM模型分析为例进行说明。 首先,我们需要收集资产的历史收益率数据以及市场收益率数据。然后,在Stata软件中导入数据并进行数据清洗和整理。接下来,我们可以使用Stata中的回归分析功能来构建CAPM模型。在Stata中,可以使用regress命令来进行线性回归分析,其中可以将资产的收益率作为因变量,市场收益率作为自变量,从而得到CAPM模型的参数估计结果。 接着,我们可以利用Stata的回归分析结果来进行CAPM模型的解释和评估。我们可以通过检验模型的拟合优度及参数的显著性来评估CAPM模型的有效性。同时,还可以计算模型的残差和相关系数来评估模型对数据的拟合程度。 最后,在Stata中还可以利用CAPM模型的结果来进行风险和收益的评估和预测。我们可以根据CAPM模型的参数估计结果计算资产的预期收益率和风险,从而为投资决策提供参考和依据。 综上所述,Stata可以作为一个强大的工具来进行CAPM模型的分析和评估。通过Stata软件的回归分析功能,可以方便地构建CAPM模型并对其进行深入的分析和应用。CAPM模型在Stata中的应用有助于投资者对资产组合的风险和收益进行科学评估,为投资决策提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值