01案例引入:公平赌博
投掷一个硬币,head则获得1元,tail则失去1元。无论头还是尾,投掷到任意一个的概率为1/2,因此,总的期望值为0.
影响是否进入或者拒绝这个赌博的因素是参与者的效用。
如果参与者现在有5元,而他拒绝进入这个赌博的原因可以表示为:
u(5)>1/2u(6)+1/2u(4)
或者:u(6)-u(5)<u(5)-u(5-1)
简而言之,获得一块钱的期望效用小于失去一元钱的效用。
02期望效用函数
当我们使用期望效用函数这种偏好。我们需要考虑两个因素,第一个因素是所有可能出现的结果,第二个是出现这些结果的概率。

在这个理论中,状态独立,时间可加。
但事实上,一个情况发生时,我们需要考虑expected payoff(期望增益)和expected utility(期望效用)。
03 风险态度risk attitude
风险厌恶:risk aversion
风险中性:risk neutral
风险偏好:risk seeking
04 风险资产的选择
原理:在风险资产的份数为0时,查看效用函数的一阶导数的值,如果一阶导数>0,说明增加风险资产的份数,整体效用函数值上升,可以进行风险资产的投资。
05绝对风险系数和相对风险系数
绝对风险系数函数:

除以一阶导数:抵消效用函数一阶导后的常数值。一阶导函数图像弯曲程度越大,厌恶程度越大。

相对效用函数:

绝对效用函数,效用函数值是一个绝对的值。相对效用函数,期望回报占投入资产恒定比例。(存疑,不懂)