风险厌恶
Introdution
上一章,基于一系列假定,我们得到了单调、凹的期望效用函数,这一章来研究其经济意义
7.1 效用函数的几何意义
7.1.1 偏好和效用函数的关系
首先,两个假定即凸偏好和凹效用函数是等价的。
感谢评论区指正,严格来说凸偏好等价于效用函数拟凹,即u(ax+(1-a)y) >= min {u(x),u(y)}
7.1.2边际效用递减
对于凹的效用函数有二阶导小于等于0,即 U ′ U^\prime U′ ′ ^\prime ′ ≤ \leq ≤ 0,这意味边际效用 U ′ U^\prime U′递减,即当消费水平上升是,一单位额外消费得到的效用是递减的。
7.2 效用函数的经济意义
7.2.1 风险厌恶
公平赌博
参与者风险厌恶
风险厌恶者追求确定性财富,厌恶不确定支付即厌恶期望效用,比较基于相同的期望财富,如:
当且仅当u是(严格)凹函数时,参与者是(严格)风险厌恶的。
7.2.2 风险厌恶的度量:“小”风险
风险溢价
参与者偏好确定性财富而非不确定财富,那么要让参与者进行公平赌博,期望财富就应该大于确定性财富,即确定性财富小于期望财富,这里的确定性财富又叫做确定性等值,确定性财富与不确定性情况下的差值又称风险溢价。用公式表示为:
E
[
u
(
w
+
g
)
]
=
u
(
w
−
π
)
\ E[u(w+g)] = u(w-\pi)
E[u(w+g)]=u(w−π) 其中
π
\pi
π是风险溢价,g是公平赌博。w-
π
\pi
π是确定性等值即进行期望财富是w的公平赌博的期望效用对应的确定性财富。
注:只是定义风险溢价的一种方法,风险溢价依赖于公平赌博的性质和参与者的风险厌恶程度。
风险小的赌博
当随机变量g取值范围很小时,成g是风险小的赌博。
风险厌恶程度的度量:泰特展开
1、
E
[
u
(
w
+
g
)
]
\ E[u(w+g)]
E[u(w+g)] 将效用函数在w点展开有:
显然由于公平赌博,一阶项为0.
2、将
u
(
w
−
π
)
u(w-\pi)
u(w−π) 在w点展开有:
u
(
w
−
π
)
u(w-\pi)
u(w−π)= u(w) -
π
u
′
(
w
)
\pi u^\prime(w)
πu′(w)+
3、因此,小风险的风险溢价:即w+g在w周围波动时
这意味着风险溢价与公平赌博的方差有关,同时方差可以度量不确定性事件的风险,那么得出结论:风险溢价和风险大小成正比(一阶导>0 二阶导<=0),而比例系数反应了参与者的风险厌恶程度。
绝对风险厌恶系数
与之相反的就是风险容忍系数toler
相对风险厌恶系数
对于一个参与者,拥有不同财富时,他对赌注为100元的公平赌博态度时完全不同的。因此可以考虑基于财富的公平赌博和风险溢价。和上面同样泰勒展开,我们得到了相对风险厌恶系数。
7.3 风险厌恶的几个例子
在本书中,我们研究风险厌恶系数不变的情况。所以考虑绝对风险厌恶系数和相对风险厌恶系数不变的几个例子。
线性或风险中性效用函数
u(w)=w
A(w)=0 R(w)=0 常数风险厌恶
负指数效用函数
u(w)=-e − ^ - − a ^a a w ^w w, a>0
A(w)=a R(w)=aw 常数绝对风险厌恶
平方效用函数
u(w)=w- 1 2 a w 2 \frac{1}{2}aw^2 21aw2, a>0,w ∈ [ 0 , 1 a ) \in[0,\frac{1}{a}) ∈[0,a1)
A(w)= a 1 − a w \frac{a}{1-aw} 1−awa,R(w)= a w 1 − a w \frac{aw}{1-aw} 1−awaw
绝对风险厌恶随财富的增加而增加,相对风险厌恶系数随财富的增加而减少即财富越多,它对风险变得越来越容忍。
幂指数效用函数
如下:
绝对风险厌恶系数随财富的增加而减少,常数相对风险厌恶。
对数效用函数
u(w)=log(w)
A(w)= 1 w \frac{1}{w} w1 R(w)=1
绝对风险厌恶系数随财富的增加而减少,常数相对风险厌恶。
双曲线绝对风险厌恶(HARA)效用函数
这类效用函数直接由它们的风险厌恶的度量定义
A(w)= 1 d + w / γ \frac{1}{d+w/\gamma} d+w/γ1 , T(w)= d + w / γ d+w/\gamma d+w/γ
这个效用函数可以度量所有前面效用函数的绝对风险厌恶系数:
风险中性:d=∞
平方:
γ
\gamma
γ=-1 d=1/a
负指数:
γ
\gamma
γ=∞ d=1/a
幂指数: d=0,
γ
>
0
\gamma>0
γ>0且
γ
≠
1
\gamma \not=1
γ=1
对数效用:d=0 ,
γ
→
1
\gamma→1
γ→1
* 7.4 风险厌恶的比较
我们已经知道了风险厌恶程度是如何度量得,那么怎么比较两个参与者得风险厌恶程度呢?定理给出了三条等价性质。
可以看到将w与z 一一对应。(2)利用反函数求导公式计算,注意这里x,y仍然是原来的变量,没有交换变量x,y
性质2,3就是说,可以找到一个凹函数使得,参与者2的效用z映射到参与者1的效用,两者通过z=
u
2
(
w
)
u_2(w)
u2(w) 求出w然后带入
u
1
u_1
u1建立联系。
性质4 说明风险厌恶系数越大,风险溢价越大。
7.5 一阶风险厌恶(效用函数不可微)
example:
考虑一个公平赌博:g,我们来计算风险溢价
-δ | δ |
---|---|
1/2 | 1/2 |
1、 E [ u ( w ‾ + g ) ] \ E[u(\overline w+g)] E[u(w+g)] = u( w ‾ − π \overline w-\pi w−π) |
2、 E [ u ( w ‾ + g ) ] \ E[u(\overline w+g)] E[u(w+g)] = 1/2 u ( w ‾ − δ ) u(\overline w-δ) u(w−δ) + 1/2 u ( w ‾ + δ ) u(\overline w+δ) u(w+δ)=
1/2 a − ( w ‾ − δ − w ‾ ) a_-(\overline w-δ-\overline w) a−(w−δ−w) +1/2 a + ( w ‾ + δ − w ‾ ) a_+(\overline w+δ-\overline w) a+(w+δ−w)=
1/2 a − ( − δ ) a_-(-δ) a−(−δ) +1/2 a + ( δ ) a_+(δ) a+(δ)=-1/2( a − − a + ) δ a_-- a_+)δ a−−a+)δ
3、u( w ‾ − π \overline w-\pi w−π) = a − ( w ‾ − π − w ‾ ) a_-(\overline w-\pi-\overline w) a−(w−π−w)= a − ( − π ) a_-(-\pi) a−(−π)
4、-1/2( a − − a + ) δ a_-- a_+)δ a−−a+)δ = a − ( − π ) a_-(-\pi) a−(−π)
π
\pi
π = [1/2(
a
−
−
a
+
a_-- a_+
a−−a+) /
a
−
a_-
a−]δ
这个博弈的方差为
δ
2
δ^2
δ2 可以看到不可微的情况下,风险溢价与标准差成正比,而可微情况下方差成正比。风险很小时,标准差比方差大得多,即高一阶,所以叫做一阶风险厌恶。