金融经济学期末梳理(王江)第七章 风险厌恶程度度量

Introdution

上一章,基于一系列假定,我们得到了单调、凹的期望效用函数,这一章来研究其经济意义

7.1 效用函数的几何意义

7.1.1 偏好和效用函数的关系

首先,两个假定即凸偏好和凹效用函数是等价的。
a
感谢评论区指正,严格来说凸偏好等价于效用函数拟凹,即u(ax+(1-a)y) >= min {u(x),u(y)}

7.1.2边际效用递减

对于凹的效用函数有二阶导小于等于0,即 U ′ U^\prime U ′ ^\prime ≤ \leq 0,这意味边际效用 U ′ U^\prime U递减,即当消费水平上升是,一单位额外消费得到的效用是递减的。

7.2 效用函数的经济意义

7.2.1 风险厌恶

公平赌博

gamble

参与者风险厌恶

风险厌恶者追求确定性财富,厌恶不确定支付即厌恶期望效用,比较基于相同的期望财富,如:

fx
当且仅当u是(严格)凹函数时,参与者是(严格)风险厌恶的。

7.2.2 风险厌恶的度量:“小”风险

风险溢价

参与者偏好确定性财富而非不确定财富,那么要让参与者进行公平赌博,期望财富就应该大于确定性财富,即确定性财富小于期望财富,这里的确定性财富又叫做确定性等值,确定性财富与不确定性情况下的差值又称风险溢价。用公式表示为:
  E [ u ( w + g ) ] = u ( w − π ) \ E[u(w+g)] = u(w-\pi)  E[u(w+g)]=u(wπ) 其中 π \pi π是风险溢价,g是公平赌博。w- π \pi π是确定性等值即进行期望财富是w的公平赌博的期望效用对应的确定性财富。
注:只是定义风险溢价的一种方法,风险溢价依赖于公平赌博的性质和参与者的风险厌恶程度。

风险小的赌博

当随机变量g取值范围很小时,成g是风险小的赌博。

风险厌恶程度的度量:泰特展开

1、   E [ u ( w + g ) ] \ E[u(w+g)]  E[u(w+g)] 将效用函数在w点展开有:TL
显然由于公平赌博,一阶项为0.
2、将 u ( w − π ) u(w-\pi) u(wπ) 在w点展开有: u ( w − π ) u(w-\pi) u(wπ)= u(w) - π u ′ ( w ) \pi u^\prime(w) πu(w)+
3、因此,小风险的风险溢价:即w+g在w周围波动时
在这里插f入图片描述
这意味着风险溢价与公平赌博的方差有关,同时方差可以度量不确定性事件的风险,那么得出结论:风险溢价和风险大小成正比(一阶导>0 二阶导<=0),而比例系数反应了参与者的风险厌恶程度。

绝对风险厌恶系数

a
与之相反的就是风险容忍系数toler
t

相对风险厌恶系数

对于一个参与者,拥有不同财富时,他对赌注为100元的公平赌博态度时完全不同的。因此可以考虑基于财富的公平赌博和风险溢价。和上面同样泰勒展开,我们得到了相对风险厌恶系数。
g

r

7.3 风险厌恶的几个例子

在本书中,我们研究风险厌恶系数不变的情况。所以考虑绝对风险厌恶系数和相对风险厌恶系数不变的几个例子。

线性或风险中性效用函数

u(w)=w

A(w)=0 R(w)=0 常数风险厌恶

负指数效用函数

u(w)=-e − ^ - a ^a a w ^w w, a>0

A(w)=a R(w)=aw 常数绝对风险厌恶

平方效用函数

u(w)=w- 1 2 a w 2 \frac{1}{2}aw^2 21aw2, a>0,w ∈ [ 0 , 1 a ) \in[0,\frac{1}{a}) [0,a1)

A(w)= a 1 − a w \frac{a}{1-aw} 1awa,R(w)= a w 1 − a w \frac{aw}{1-aw} 1awaw

绝对风险厌恶随财富的增加而增加,相对风险厌恶系数随财富的增加而减少即财富越多,它对风险变得越来越容忍。

幂指数效用函数

如下:
幂指
绝对风险厌恶系数随财富的增加而减少,常数相对风险厌恶。

对数效用函数

u(w)=log(w)

A(w)= 1 w \frac{1}{w} w1 R(w)=1

绝对风险厌恶系数随财富的增加而减少,常数相对风险厌恶。

双曲线绝对风险厌恶(HARA)效用函数

这类效用函数直接由它们的风险厌恶的度量定义

A(w)= 1 d + w / γ \frac{1}{d+w/\gamma} d+w/γ1 , T(w)= d + w / γ d+w/\gamma d+w/γ

这个效用函数可以度量所有前面效用函数的绝对风险厌恶系数:

风险中性:d=∞
平方: γ \gamma γ=-1 d=1/a
负指数: γ \gamma γ=∞ d=1/a
幂指数: d=0, γ > 0 \gamma>0 γ>0 γ ≠ 1 \gamma \not=1 γ=1
对数效用:d=0 , γ → 1 \gamma→1 γ1

* 7.4 风险厌恶的比较

我们已经知道了风险厌恶程度是如何度量得,那么怎么比较两个参与者得风险厌恶程度呢?定理给出了三条等价性质。
关系
可以看到将w与z 一一对应。(2)利用反函数求导公式计算,注意这里x,y仍然是原来的变量,没有交换变量x,y
性质2,3就是说,可以找到一个凹函数使得,参与者2的效用z映射到参与者1的效用,两者通过z= u 2 ( w ) u_2(w) u2(w) 求出w然后带入 u 1 u_1 u1建立联系。
性质4 说明风险厌恶系数越大,风险溢价越大。

7.5 一阶风险厌恶(效用函数不可微)

example:u
考虑一个公平赌博:g,我们来计算风险溢价

δ
1/21/2
1、   E [ u ( w ‾ + g ) ] \ E[u(\overline w+g)]  E[u(w+g)] = u( w ‾ − π \overline w-\pi wπ)

2、   E [ u ( w ‾ + g ) ] \ E[u(\overline w+g)]  E[u(w+g)] = 1/2 u ( w ‾ − δ ) u(\overline w-δ) u(wδ) + 1/2 u ( w ‾ + δ ) u(\overline w+δ) u(w+δ)=

1/2 a − ( w ‾ − δ − w ‾ ) a_-(\overline w-δ-\overline w) a(wδw) +1/2 a + ( w ‾ + δ − w ‾ ) a_+(\overline w+δ-\overline w) a+(w+δw)=

1/2 a − ( − δ ) a_-(-δ) a(δ) +1/2 a + ( δ ) a_+(δ) a+(δ)=-1/2( a − − a + ) δ a_-- a_+)δ aa+)δ

3、u( w ‾ − π \overline w-\pi wπ) = a − ( w ‾ − π − w ‾ ) a_-(\overline w-\pi-\overline w) a(wπw)= a − ( − π ) a_-(-\pi) a(π)

4、-1/2( a − − a + ) δ a_-- a_+)δ aa+)δ = a − ( − π ) a_-(-\pi) a(π)

π \pi π = [1/2( a − − a + a_-- a_+ aa+) / a − a_- a
这个博弈的方差为 δ 2 δ^2 δ2 可以看到不可微的情况下,风险溢价与标准差成正比,而可微情况下方差成正比。风险很小时,标准差比方差大得多,即高一阶,所以叫做一阶风险厌恶。

以下是C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> // 定义邻接矩阵的最大大小 #define MAX_VERTEX_NUM 20 // 定义数据类型 typedef char VertexType; typedef int EdgeType; // 定义图的结构体 typedef struct { VertexType vexs[MAX_VERTEX_NUM]; // 存储顶点 EdgeType arc[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 存储边 int vexnum, arcnum; // 存储顶点数和边数 } MGraph; // 定义队列结构体 typedef struct { int data[MAX_VERTEX_NUM]; // 存储队列元素 int front, rear; // 队首和队尾指针 } Queue; // 初始化队列 void InitQueue(Queue *q) { q->front = q->rear = 0; } // 判断队列是否为空 bool QueueIsEmpty(Queue *q) { return q->front == q->rear; } // 入队 void EnQueue(Queue *q, int x) { q->data[q->rear++] = x; } // 出队 int DeQueue(Queue *q) { return q->data[q->front++]; } // 广度优先搜索 bool BFS(MGraph *G, int start, int visited[MAX_VERTEX_NUM]) { Queue q; InitQueue(&q); EnQueue(&q, start); visited[start] = true; while (!QueueIsEmpty(&q)) { int v = DeQueue(&q); for (int w = 0; w < G->vexnum; w++) { if (G->arc[v][w] && !visited[w]) { visited[w] = true; EnQueue(&q, w); } } } for (int i = 0; i < G->vexnum; i++) { if (!visited[i]) { return false; } } return true; } // 生成树并输出树枝信息 void CreateTree(MGraph *G) { int visited[MAX_VERTEX_NUM] = {0}; int count = 0; for (int i = 0; i < G->vexnum; i++) { if (!visited[i]) { if (BFS(G, i, visited)) { count++; if (count == 1) { printf("%c", G->vexs[i]); } else { printf(" %c", G->vexs[i]); } for (int j = 0; j < G->vexnum; j++) { if (visited[j] && G->arc[i][j]) { printf(",%c", G->vexs[j]); } } printf("\n"); } else { printf("ERROR\n"); return; } } } } int main() { MGraph G; scanf("%d", &G.vexnum); for (int i = 0; i < G.vexnum; i++) { scanf(" %c", &G.vexs[i]); } scanf("%d", &G.arcnum); for (int i = 0; i < G.arcnum; i++) { char v1, v2; scanf(" %c %c", &v1, &v2); int j = 0, k = 0; while (G.vexs[j] != v1) { j++; } while (G.vexs[k] != v2) { k++; } G.arc[j][k] = G.arc[k][j] = 1; } CreateTree(&G); return 0; } ``` 输入样例: ``` 8 A B C D E F G H 8 A B A C B D B E C F C G F G D H ``` 输出样例: ``` A,B A,C B,D B,E C,F C,G D,H ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值