效用理论

内容来源

保险风险与破产(原书第二版)科学出版社


效用函数

效用函数 u ( x ) u(x) u(x) 是衡量个体(或机构)所拥有的财富 x x x 的价值水平或效用水平的函数

整本书中假设效用函数满足条件

u ′ ( x ) > 0 , u ′ ′ ( x ) < 0 u'(x)>0,u''(x)<0 u(x)>0,u′′(x)<0

第一个条件表明个体倾向于拥有更多的财富

第二个条件表明个体的边际效用递减

称效用函数满足以上条件的个体为风险厌恶者

风险厌恶系数定义

r ( x ) = − u ′ ′ ( x ) u ′ ( x ) r(x)=-\frac{u''(x)}{u'(x)} r(x)=u(x)u′′(x)

Jensen不等式

u u u 是一个凹函数时

E [ u ( X ) ] ⩽ u ( E [ X ] ) E[u(X)]\leqslant u(E[X]) E[u(X)]u(E[X])

其中 X X X 是一个随机变量

被保险人角度

考虑财富值为 W W W 的个体

假设他可以通过购买全额赔付保险来规避随机损失 X X X

则他所支付的最大保费 P P P 应满足

u ( W − P ) = E [ u ( W − X ) ] u(W-P)=E[u(W-X)] u(WP)=E[u(WX)]

J e n s e n Jensen Jensen 不等式

E [ u ( W − X ) ] ⩽ u ( E [ W − X ] ) = u ( W − E [ X ] ) E[u(W-X)]\leqslant u(E[W-X])=u(W-E[X]) E[u(WX)]u(E[WX])=u(WE[X])

所以

u ( W − P ) ⩽ u ( W − E [ X ] ) u(W-P)\leqslant u(W-E[X]) u(WP)u(WE[X])

因为 u u u 是增函数,所以 P ⩾ E [ X ] P\geqslant E[X] PE[X]

该结果表明该个体所需支付的最大保费至少到等于期望损失

保险人角度

假设一保险人的效用函数为 v v v,财富值为 W W W

某一个体希望该保险人能提供承保随机损失 X X X 的全额赔付保险

他可接受的最小保费 Π \Pi Π 应满足

v ( W ) = E [ v ( W + Π − X ) ] v(W)=E[v(W+\Pi-X)] v(W)=E[v(W+ΠX)]

类似的,由 J e n s e n Jensen Jensen 不等式

v ( W ) ⩽ v ( W + Π − E [ X ] ) v(W)\leqslant v(W+\Pi-E[X]) v(W)v(W+ΠE[X])

因为 v v v 是增函数, Π > E [ X ] \Pi>E[X] Π>E[X]

保险人所要求的最小保费至少等于期望损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值