内容来源
保险风险与破产(原书第二版)科学出版社
效用函数
效用函数 u ( x ) u(x) u(x) 是衡量个体(或机构)所拥有的财富 x x x 的价值水平或效用水平的函数
整本书中假设效用函数满足条件
u ′ ( x ) > 0 , u ′ ′ ( x ) < 0 u'(x)>0,u''(x)<0 u′(x)>0,u′′(x)<0
第一个条件表明个体倾向于拥有更多的财富
第二个条件表明个体的边际效用递减
称效用函数满足以上条件的个体为风险厌恶者
风险厌恶系数定义
r ( x ) = − u ′ ′ ( x ) u ′ ( x ) r(x)=-\frac{u''(x)}{u'(x)} r(x)=−u′(x)u′′(x)
Jensen不等式
当 u u u 是一个凹函数时
E [ u ( X ) ] ⩽ u ( E [ X ] ) E[u(X)]\leqslant u(E[X]) E[u(X)]⩽u(E[X])
其中 X X X 是一个随机变量
被保险人角度
考虑财富值为 W W W 的个体
假设他可以通过购买全额赔付保险来规避随机损失 X X X
则他所支付的最大保费 P P P 应满足
u ( W − P ) = E [ u ( W − X ) ] u(W-P)=E[u(W-X)] u(W−P)=E[u(W−X)]
由 J e n s e n Jensen Jensen 不等式
E [ u ( W − X ) ] ⩽ u ( E [ W − X ] ) = u ( W − E [ X ] ) E[u(W-X)]\leqslant u(E[W-X])=u(W-E[X]) E[u(W−X)]⩽u(E[W−X])=u(W−E[X])
所以
u ( W − P ) ⩽ u ( W − E [ X ] ) u(W-P)\leqslant u(W-E[X]) u(W−P)⩽u(W−E[X])
因为 u u u 是增函数,所以 P ⩾ E [ X ] P\geqslant E[X] P⩾E[X]
该结果表明该个体所需支付的最大保费至少到等于期望损失
保险人角度
假设一保险人的效用函数为 v v v,财富值为 W W W
某一个体希望该保险人能提供承保随机损失 X X X 的全额赔付保险
他可接受的最小保费 Π \Pi Π 应满足
v ( W ) = E [ v ( W + Π − X ) ] v(W)=E[v(W+\Pi-X)] v(W)=E[v(W+Π−X)]
类似的,由 J e n s e n Jensen Jensen 不等式
v ( W ) ⩽ v ( W + Π − E [ X ] ) v(W)\leqslant v(W+\Pi-E[X]) v(W)⩽v(W+Π−E[X])
因为 v v v 是增函数, Π > E [ X ] \Pi>E[X] Π>E[X]
保险人所要求的最小保费至少等于期望损失