Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy【时序异常检测】

Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy【时序异常检测】

原文地址

Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

背景

时序异常检测的关键是学习时间序列的表征并找到一种对异常点和正常点具有辨别性的评估指标。
现有的方法通过学习 pointwise representation 或者 pairwise association 来推导出可以区分正常与异常点的准则。缺点是两类方法都不适用于推导具有复杂的动态变化的时间序列的区分准则。

现有相关的异常检测方法主要有两类:
① 一种通过重建或者自回归任务来自监督学习 pointwise representations缺点是逐点计算误差导致无法提供对时间序列的全面描述
② 另一种方法是通过 “explicit association modeling(显示关联建模)” 。比如,将时间序列的不同时间点表示为一张图的顶点,随后通过随机游走检测异常。缺点是图仍然局限于单个时间点,无法捕获每个时间点与整个序列的细粒度时间关联。

根据作者的观察,由于异常点十分稀有,所以在异常点与整个时间序列之间建立强关联十分困难,且异常点的关联主要集中在与其相邻的时间点上(这种邻接集中偏差被称为prior-association)。也就是说,关联的标准在异常点正常点之间有一定区别。通过量化prior-association(我认为它代表局部的信息)以及series-association(即temporal association,单个时间点与整个序列的关联,可以表示出时间序列的变化趋势,也许带着预测的性质?)之间的距离可以得到Association Discrepancy(关联差异)
异常点的Association Discrepancy(关联差异)小于 正常点的。

主要思想

  • 设计一种Anomaly Transformer with an Anomaly-Attention mechanism来量化prior-association以及series-association,并得到Association Discrepancy
  • 随后利用minimax strategy来放大Association Discrepancy,以更好区分异常点与正常点。

模型设计

anomaly transformer
这个模型本质上是对transformer进行了一定的改进,基本结构与transformer类似(figure 1 的右图)。第 l l l-th层的输出如下,其中Anomaly-Attention(·)用于计算association discrepancy
在这里插入图片描述
主要改进集中在左图(Anomaly Attention)。
Q , K , V ∈ R N × d m o d e l Q,K,V \in \mathbb{R}^{N×d_{model}} Q,K,VRN×dmodel都是通过原始数据经过线性变换得来,与transformer类似。
σ ∈ R N × 1 \sigma \in \mathbb{R}^{N×1} σRN×1也是通过原始数据经过线性变换得来。
Anomaly Attention第 l l l-th层计算方式如下。
在这里插入图片描述

Association Discrepancy

得到prior-associationseries-association后,利用了symmetrized KL散度计算分布差异,即association discrepancy。每个时间点对应一个值,异常数据相比正常数据AssDis的值会较小。
在这里插入图片描述

Minimax association learning

本文除了重构损失,还定义了另一个损失(关联损失)去放大异常点与正常点的差异。
在这里插入图片描述
∣ ∣ X − X ^ ∣ ∣ F 2 ||\mathcal{X}-\mathcal{\hat X}||^2_F ∣∣XX^F2指重构损失,后面的 λ × ∣ ∣ \lambda × || λ×∣∣AssDis ( P , S ; X ) ∣ ∣ k (\mathcal{P,S;X})||_k (P,S;X)k采用Minimax strategy来进行优化(如下)。
在这里插入图片描述

AnomalyScore异常分数的定义

异常分数
异常点的association discrepancy较小,所以经过Softmax ( − (- (AssDis ( P , S ; X ) ) (\mathcal{P,S;X})) (P,S;X))后,分数是偏高的。
在这里插入图片描述

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
异常检测是指在大规模数据中发现异常异常行为的过程。在传统的异常检测方法中,经常会使用基于统计学的方法,如基于阈值的技术或基于规则的技术,来找出与正常模式不一致的样本或事件。然而,这些方法存在一些局限性,比如无法处理非线性关系或隐含的模式,以及对数据的特征进行全面的抽取。 深度分布式时间序列模型则提供了一种创新和强大的方法来处理大规模数据的异常检测问题。这种模型将深度学习和概率建模相结合,能够对数据的分布进行建模,并以此来检测异常。在这种模型中,每个时间点的数据样本都被看作是从一个潜在分布中抽取的,而异常数据点则被认为是与这个分布不一致的。 深度分布式时间序列模型的一个优点是它能够从数据中自动学习分布的特征,而不需要手动提取特征。这使得模型更加灵活和适用于各种不同类型的数据。此外,这种模型还可以处理非线性关系和多变量时间序列数据,进一步提高了其异常检测的准确性和可靠性。 另外,深度分布式时间序列模型还可以处理大规模数据集,并且能够进行实时的异常检测。这是因为该模型可以在分布式系统中进行并行计算,并且具备较低的计算和存储需求。这样一来,无论是对于高速数据流还是对于历史数据集,深度分布式时间序列模型都能快速地进行异常检测。 总的来说,深度分布式时间序列模型在大规模数据的异常检测中具有很大的潜力。它能够自动提取数据分布的特征,适应各种类型的数据,处理非线性关系和多变量时间序列数据,并且能够处理大规模数据集并进行实时的检测。通过应用这种模型,我们可以更加准确地识别出异常行为,帮助我们提高数据安全性和业务运营效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值