神经网络_图灵_6第六章_与学习相关的技巧

参数的更新

SGD随机梯度下降法

为了找到最优参数,我们将参数的梯度(导数)作为了线索。使用参数的梯度,沿梯度方向更新参数,并重复这个步骤多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降法,简称SGD。

class SGD:
    def __init__(self, lr):
        self.lr = lr
    def update(self, params, grads):
        for key in params.keys():
            params[key] -= self.lr * grads[key]
  • SGD的缺点是:如果函数的形状非均向,比如呈延伸状,搜索的路径就会非常低效
  • SGD低效的根本原因是,它单纯朝梯度方向前进,然后梯度的方向并没有指向最小值的方向
  • 因此为了SGD的缺点,我们将介绍Momentum、AdaGrad、Adam这三种方法来取代SGD

Momentum方法

  • Momentum是“动量”的意思,用数学式表示为:
    • v ← αv - 学习率*梯度
    • W ← W + v
class Momentum:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)
        for key in params.keys():
            self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
            params[key] += self.v[key]

AdaGrad方法

  • AdaGrad会为参数的每个元素适当地调整学习率,用数学式表示为:
    • h ← h + 梯度*梯度
    • W ← W - 学习率 * 梯度 / (根号h)
  • 利用是的“学习率衰减”,即随着学习的进行,使参数的元素中变动较大的元素的学习率变小
class AdaGrad:
    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None
    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)
        for key in params.keys():
            self.h[key] += grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

PS:这里在最后一行加上1e-7,是为了防止分母为0的情况

正则化

在机器学习的问题中,过拟合是一个很常见的问题

Dropout方法

  • 是一种抑制过拟合的方法
  • Dropout在学习的过程中随机删除神经元,被删除的神经元不再进行信号的传递
    – 每次正向传播时,self.mask都会以False的形式保存要删除的神经元
    – self.mask会随机生成与x相同形状的数组,并将值比dropout_ratio大的元素设为True
    – 反向传播时的行为和ReLU相同,即正向传播时传递了的神经元,在反向传播时按原样传回信号;而正向传播时没有被传递的神经元,在反向传播时将停在那里
class Dropout:
    def __init__(self, dropout_ratio=0.5):
        self.dropout_ratio = dropout_ratio
        self.mask = None
    def forward(self, x, train_flg=True):
        if train_flg:
            self.mask = np.random.rand(*x.shape) > self.dropout_ratio
            return x * self.mask
        else:
            return x * (1.0 - self.dropout_ratio)
    def backward(self, dout):
        return dout * self.mask
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值