《物流管理定量分析方法》第三次作业

物流管理定量分析方法

第三次作业

(一)单项选择题

1.设运输某物品的成本函数为C (q)=q2+50q+2000,则运输量为100单位时的成本为(  A  )。

(A) 17000                    (B) 1700

(C) 170                        (D) 250

2.设运输某物品q吨的成本(单位:元)函数为C (q)=q2+50q+2000,则运输该物品100吨时的平均成本为(  C  )元/吨。

(A) 17000                    (B) 1700

(C) 170                        (D) 250

3. 设某公司运输某物品的总成本(单位:百元)函数为C (q)=500+2qq2,则运输量为100单位时的边际成本为(    )百元/单位。

(A) 202                        (B) 107

(C) 10700                   (D) 702

4. 设某公司运输某物品的总收入(单位:千元)函数为R (q)=100q-0.2q2,则运输量为100单位时的边际收入为(    )千元/单位。

(A) 40                        (B) 60

(C) 800                      (D) 8000

(二)计算导数

1.设y=(2+x3) e x,求:y'

2.设y,求:y’

(三)应用题

1. 某物流公司生产某种商品,其年销售量为1000000件,每批生产需准备费1000元,而每件商品每年库存费为0.05元,如果该商品年销售率是均匀的,试求最优销售批量。

2. 设某物流公司运输一批物品,其固定成本为1000元,每多运输一个该物品,成本增加40元。又已知需求函数q=1000-10p。其中p为运价,单位:元/个,试求:

(1)运输量为多少时,利润最大?

(2)获最大利润时的运价。、

3.已知某商品运输量为q单位的总成本函数为C (q)=2000+100 q +0.01q2,总收入函数为R(q)=150 q -0.01 q2,求使利润(单位:元)最大时的运输量和最大利润。

*(四)计算题

1. 求函数y的定义域

2. 已知函数f (x+1)=x2+4x-3,求:f (x),f (0),f (1)

3. 判别下列函数的奇偶性:

(1) y=ln (x2+3)                (2) y=e x-e-x

4. 判别下列各对函数是否相同:

(1) yx2+2x+1与y=(t+1)2    (2) yxy(x)2

(3) y=ln x3与y=3 ln x

5. 将下列复合函数分解成基本初等函数或其四则运算:

(1) y=log 2 (1-x2)               (2) y=

(五)用MATLAB软件计算导数(写出命令语句,并用MATLAB软件运行)

1.设y=(x2-1) ln (x+1),求

2.设y,求

3.设y=,求

4.设y= ,求

5.设y=  ,求

6.设y=,求y″

*(六)用手工计算下列各题

1.设y= ,求

2.设y= ,求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值