天猫订单数据综合分析

本文通过分析天猫一个月的成交数据,运用Python进行数据预处理和分析,旨在揭示销售问题并提出改进措施。发现2月销售额为190万,低于230万的目标,转化率低于行业标准。主要问题集中在订单创建到付款的转化环节,以及2月10日至16日的低销售额。此外,销售额前五的省市中,北京和广东的转化率低于平均水平。针对不同地区和产品,提出了提升订单创建数和转化率的优化建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目介绍

本项目通过对天猫成交数据的探索,通过python对数据预处理,整个项目分为项目目的的确定、数据的预处理、对数据的分析和项目总结这五个部分。(本项目参考凹凸数据)

二、项目流程

项目目的

从结果指标出发确定目标,通过过程指标定位问题,提出合理建议

数据来源

本数据集来源于和鲸社区

一共收录了发生在一个月内的28010条数据
数据字段:'订单编号', '总金额', '买家实际支付金额', '收货地址 ', '订单创建时间', '订单付款时间 ', '退款金额'共7个字段

  • 买家实际支付金额:最终成交金额,分为已付款和未付款两种情况

    • 已付款情况下:买家实际支付金额 = 总金额 - 退款金额

    • 未付款情况下:买家实际支付金额 = 0

  • 收货地址:买家的收货地址,记录维度为省市,共记录了31个省市

  • 订单创建时间:2020年2月1日 至 2020年2月29日

  • 订单付款时间:2020年2月1日 至 2020年3月1日

  • 退款金额:付款后申请退款的金额,如果没有退款,退款金额为0

指标维度梳理

通过上面的字段梳理可知,除了成交金额作为结果指标外,还有一系列的过程指标,那么就需要对指标间的关系做逻辑梳理。

这里我们引入电商的分析中最经典的公式:销售额 = UV *  转化率 * 客单价

  • 指标梳理:

    • UV:一般指独立访客,在本数据集中,没有客户id作为UV数据,但我们可以把订单创建数量作为UV的数据

    • 转化率:转化流程为订单创建 -> 订单付款 -> 订单成交 -> 订单全额成交

    • 客单价:平均每单的售价,在本数据集当中,亦可以理解为各个产品的销量情况

  • 维度梳理:

    • 时间维度:(周/日)订单创建/付款时间

    • 地域:各省市

    • 产品:假设每一种金额对应唯一的产品时,总金额便可以作为产品品类的标识

数据预处理

主要是运用python预处理。

导入模块

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

读取数据 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

整体观察 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

重复值处理 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

缺失值处理 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16 

字段处理 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

日期格式提取 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA6L6j5qKo55qE5YiG5p6Q5bGL,size_20,color_FFFFFF,t_70,g_se,x_16

 结果指标

#销售额图df_true_money=df.groupby('订单创建月日')['买家实际支付金额'].sum()x1=df_true_money.indexy1=df_true_money.valuesdf_true_money_sum=df['买家实际支付金额'].sum()picture_size=plt.figure(figsize=(20,8),dpi=80)#设置绘图大小plt.text(1, 200000, '二月份总销售额为{}'.forma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值