2023年全国大学生数学建模大赛(高教社杯数模国赛)A题B题C题D题E题思路+模型+代码+论文

一、数学建模常用方法


各赛题思路开赛后会第一时间更新

数学建模是将实际问题抽象为数学模型,并利用数学方法进行求解和分析的过程。在数学建模中,常用的模型算法非常多,下面列举了一些常见的模型算法。

  1. 线性回归:线性回归是一种常见的建模方法,用于建立因变量与自变量之间的线性关系模型。通过最小二乘法估计模型参数,可以预测因变量的取值。

  2. 非线性回归:与线性回归不同,非线性回归建立了非线性关系模型。这种模型常用于描述实际问题中的非线性关系,如指数模型、幂函数模型等。

  3. 逻辑回归:逻辑回归是一种用于分类问题的模型,通过将线性回归的结果通过一个逻辑函数进行映射,得到分类的概率。

  4. 线性规划:线性规划是一种优化模型,通过线性目标函数和线性约束条件,求解使目标函数最大或最小的变量取值。

  5. 整数规划:整数规划和线性规划类似,但变量需要取整数值。这种模型常用于离散决策问题,如资源分配、装箱问题等。

  6. 动态规划:动态规划是一种求解多阶段决策问题的模型算法,通过递推的方式求解最优解。常用于路径规划、背包问题等。

  7. 聚类分析:聚类分析是一种无监督学习方法,将样本根据相似性进行分组。常用的算法有K-means、层次聚类等。

  8. 主成分分析:主成分分析是一种降维方法,通过线性投影将高维数据转化为低维数据,尽量保留原数据的特征。

  9. 支持向量机:支持向量机是一种用于分类和回归的模型算法,通过寻找一个最优超平面将数据分开。

  10. 神经网络:神经网络是一种模

热防护服是高温环境工作人群的重要保障,本文通过建立数学模型对多层热防护织物内部传热规律进行研究,建立防护服装内部的热传递模型,从而解决外界环境温度一定时,防护服各层随时间变化的温度分布问和各层织物材料的最优厚度问。 假人处于恒高温环境中,不虑防护服织物的边缘热量损失,且人体和防护服的空气间隔很小,忽略空气的自然对流,只虑热传导;故可以把织物视为导热多层平面,且属于非稳态导热过程。建立“高温环境-防护服-假人体表”系统;由傅里叶定律描述导热速率,将温度的变化转是能量传递的结果,将其看作电磁波的辐射和介质中对电磁波的传输问。 防护服中的温度分布由时间和防护服与外界热源相对位置二者共同决定的二元函数,因为二元偏微分方程的解析解无法精确求出,所以对时间进行离散化分析,分析以一秒为单位时间的温度变化与位置的关系,从而对问进行简化。 针对问一,将各层的导热过程抽象简化处理转换为平板中非稳态导热过程,在平板厚度的四周绝热良好时,从传热的角度上将问简化为一个一维传热问;从假人皮肤外侧的温度变化入手,根据热量的流向和生热情况从第Ⅳ层、第III层、第Ⅱ层、第Ⅰ层反向递推出和外界环境温度的关系,引入能温转换系数,建立假人皮肤外侧温度变化和外界温度的等式关系,最后利用最小二乘法设计程序,求出每一阶段的温度分布平差之后的结果,从而得到温度分布。 针对问二,虑在一小时内该系统温度变化,用时间限制与温度阈值限制作为约束条件的规划问,沿用离散化分析手段,由假人体表温度逆推防护服第Ⅱ层厚度的表达式,建立其与外界温度的关系,并寻求满足条件下的最优解。 针对问三,虑在给定半小时时间内该系统温度变化,添加更多的约束条件,对问二中的求解模型进行进一步优化,利用lingo寻找第Ⅱ、Ⅳ层厚度的最优解,并沿用前问中离散化分析手段,由假人体表温度逆推防护服相关设计参数。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值