一、模型概述
Devstral-Small-2505 是由 Mistral AI 与 All Hands AI 合作开发的一款面向软件工程任务的代理型语言模型。它在使用工具探索代码库、编辑多个文件以及为软件工程代理提供支持等方面表现出色。该模型基于 Mistral-Small-3.1 进行微调,具有最长 128k 令牌的上下文窗口。在 SWE-bench 基准测试中,它以 46.8% 的成绩位列开源模型第一。
二、关键特性
-
代理式编程能力 :Devstral 专门针对代理式编程任务进行设计,适合软件工程代理使用。
-
轻量级 :参数规模仅 240 亿,可在配备 32GB 内存的 RTX 4090 或 Mac 设备上运行,适合本地部署和设备端使用。
-
开源许可 :采用 Apache 2.0 许可证,允许用于商业和非商业目的的使用与修改。
-
大上下文窗口 :上下文窗口达到 128k 令牌,能处理更长的代码和文本序列。
-
特定分词器 :使用 Tekken 分词器,词汇量为 131k。
三、基准测试表现
在 SWE-Bench 测试中,Devstral 在 OpenHands 支架下取得 46.8% 的验证分数,超越众多开源顶尖模型。例如,GPT-4.1-mini 在 OpenAI 支架下的分数为 23.6%,Claude 3.5 Haiku 在 Anthropic 支架下的分数为 40.6%,SWE-smith-LM 32B 在 SWE-agent 支架下的分数为 40.2%。当在同一测试支架(OpenHands)下评估时,Devstral 远超更大规模的模型,如 Deepseek-V3-0324 和 Qwen3 232B-A22B。
四、使用方法
-
API 使用 :创建 Mistral 账户获取 API 密钥后,运行相应命令启动 OpenHands docker 容器,通过 OpenHands 平台连接和使用 Devstral。
-
本地推理 :可通过 vllm、mistral-inference、transformers、LMStudio、llama.cpp、ollama 等库进行本地部署。
五、具体部署方式
-
OpenHands 部署 :先使用 vLLM 或 Ollama 等启动与 OpenAI 兼容的服务器,然后通过安装 OpenHands 并配置相关参数,连接服务器后即可在 OpenHands 中使用 Devstral。
-
vLLM 部署 :安装 vLLM 及相关依赖后,启动服务器并通过 Python 脚本与客户端通信。
-
mistral-inference 部署 :安装 mistral_inference,下载模型文件,使用命令运行模型并进行交互。
-
transformers 部署 :安装 mistral-common 和 transformers,加载模型和分词器,生成文本。
-
LMStudio 部署 :下载模型权重,安装 LM Studio 及相关工具,导入模型并在 LM Studio 中运行,通过 Openhands 连接使用。
-
llama.cpp 部署 :下载模型权重,通过 llama.cpp 命令行界面运行模型。
-
Ollama 部署 :使用 Ollama 命令行界面运行模型。
六、总结
Devstral-Small-2505 凭借其在软件工程任务中的卓越性能、轻量级设计、开源许可以及大上下文窗口等优势,为开发者提供了一个强大的本地部署和代理式编程解决方案。无论是通过 API 还是本地推理,用户都能便捷地使用该模型来提升软件工程效率。