Title
题目
MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification
MTANet: 多任务注意力网络,用于自动医学图像分割和分类
01
文献速递介绍
医学图像分割和分类是当前临床实践中的两个关键步骤,其准确性主要取决于个别临床医生的专业知识。计算机辅助诊断(CAD)系统在医学图像诊断中受到广泛关注,旨在帮助临床医生以更准确和客观的方式进行诊断决策。近年来,基于机器学习特别是深度学习的方法,在包括医学图像分割和分类在内的许多医学图像任务中取得了显著进展。
卷积神经网络(CNNs)在许多医学图像分割任务中取得了显著成功。特别是,UNet通过端到端的像素级预测在医学图像分割方面取得了重大突破。UNet引入的编码器和解码器之间的跳跃连接将低分辨率特征融入高分辨率特征中,以提高分割能力。受到UNet成功的启发,近年来大多数领先的模型都建立在UNet架构的基础上,包括ResUNet、DenseUNet、UNet++、DoubleUNet、集成学习等。
然而,这些方法主要集中在医学对象的整个区域,对于检测小的医学对象的敏感性较低。注意力机制在transformer模型成功应用后引起了广泛关注。注意力机制不使用所有可用特征,而是选择一部分相关的感知信息来检测显著特征。在自然场景图像分割网络取得成功后,注意力机制被引入到许多医学图像分割工作中,如Focus UNet、MedT、TransUNet和UACANet等。这些方法在医学分割任务上表现出色,但很少考虑解码器中的高分辨率特征和编码器与解码器之间的连接。
此外,基于transformer的架构已经在语义分割任务中展示了最先进的性能。受到Vision Transformer-based方法(VIT)的发展启发,最近的transformer-based骨干网络在性能上已经达到或超过了基于CNN的骨干网络。
Abstract
摘要
Medical image segmentation and classifica**tion are two of the most key steps in computer-aidedclinical diagnosis. The region of interest were usuallysegmented in a proper manner to extract useful featuresfor further disease classification. However, these methodsare computationally complex and time-consuming. In thispaper, we proposed a one-stage multi-task attention network (MTANet) which efficiently classifies objects in animage while generating a high-qua