来源链接:https://www.docin.com/p-2690426712.html
常微分方程特征值解法
设 n n n 次常微分方程为 x ( n ) + a 1 x ( n − 1 ) + … + a n − 1 x ′ + a n x = 0 , (1) x^{(n)}+a_1x^{(n-1)}+\ldots+a_{n-1}x^{'}+a_nx=0,\tag{1} x(n)+a1x(n−1)+…+an−1x′+anx=0,(1)则其特征方程为 λ ( n ) + a 1 λ ( n − 1 ) + … + a n − 1 λ ′ + a n λ = 0 , (2) \lambda^{(n)}+a_1\lambda^{(n-1)}+\ldots+a_{n-1}\lambda^{'}+a_n\lambda=0,\tag{2} λ(n)+a1λ(n−1)+…+an−1λ′+anλ=0,(2)则方程(1)的线性无关解可表示如下:
特征值 | 重数 | 线性无关解 |
---|---|---|
λ \lambda λ(实数根) | 1 | e λ t e^{\lambda t} eλt |
λ \lambda λ(实数根) | k , k ≤ n k,k\leq n k,k≤n | e λ t e^{\lambda t} eλt, t e λ t te^{\lambda t} teλt, … \ldots …, t k − 1 e λ t t^{k-1}e^{\lambda t} tk−1eλt |
α ± β i \alpha\pm \beta i α±βi(复数根) | 1 | e α t c o s β t e^{\alpha t}cos\beta t eαtcosβt, e α t s i n β t e^{\alpha t}sin\beta t eαtsinβt |
α ± β i \alpha\pm \beta i α±βi(复数根) | k , k ≤ n k,k\leq n k,k≤n | e α t c o s β t e^{\alpha t}cos\beta t eαtcosβt, e α t s i n β t e^{\alpha t}sin\beta t eαtsinβt, t e α t c o s β t te^{\alpha t}cos\beta t teαtcosβt, t e α t s i n β t te^{\alpha t}sin\beta t teαtsinβt, … \ldots …, t k − 1 e α t c o s β t t^{k-1}e^{\alpha t}cos\beta t tk−1eαtcosβt, t k − 1 e α t s i n β t t^{k-1}e^{\alpha t}sin\beta t tk−1eαtsinβt |
常微分方程组特征值解法
考虑如下一阶非齐次线性常微分方程组
{
x
1
′
(
t
)
=
a
11
(
t
)
x
1
+
a
12
(
t
)
x
2
+
…
+
a
1
n
(
t
)
x
n
+
f
1
(
t
)
x
2
′
(
t
)
=
a
21
(
t
)
x
1
+
a
22
(
t
)
x
2
+
…
+
a
2
n
(
t
)
x
n
+
f
2
(
t
)
⋮
x
n
′
(
t
)
=
a
n
1
(
t
)
x
1
+
a
n
2
(
t
)
x
2
+
…
+
a
n
n
(
t
)
x
n
+
f
n
(
t
)
\begin{cases} x_1^{'}(t)=a_{11}(t)x_1+a_{12}(t)x_2+\ldots+a_{1n}(t)x_n+f_1(t)\\ x_2^{'}(t)=a_{21}(t)x_1+a_{22}(t)x_2+\ldots+a_{2n}(t)x_n+f_2(t)\\ \qquad \qquad \qquad \qquad \qquad \quad \quad \quad \vdots\\ x_n^{'}(t)=a_{n1}(t)x_1+a_{n2}(t)x_2+\ldots+a_{nn}(t)x_n+f_n(t)\\ \end{cases}
⎩
⎨
⎧x1′(t)=a11(t)x1+a12(t)x2+…+a1n(t)xn+f1(t)x2′(t)=a21(t)x1+a22(t)x2+…+a2n(t)xn+f2(t)⋮xn′(t)=an1(t)x1+an2(t)x2+…+ann(t)xn+fn(t)写为向量形式为
x
˙
(
t
)
=
A
(
t
)
x
(
t
)
+
f
(
t
)
,
(3)
\pmb{\dot{x}}(t)=A(t)\pmb{x}(t)+\pmb{f}(t),\tag{3}
x˙(t)=A(t)x(t)+f(t),(3)其中
x
(
t
)
=
(
x
1
(
t
)
,
x
2
(
t
)
,
…
,
x
n
(
t
)
)
T
\pmb{x}(t)=(x_1(t), x_2(t), \dots, x_n(t))^T
x(t)=(x1(t),x2(t),…,xn(t))T,
A
(
t
)
=
(
a
i
j
(
t
)
)
n
×
n
A(t)=(a_{ij}(t))_{n\times n}
A(t)=(aij(t))n×n,
f
(
t
)
=
(
f
1
(
t
)
,
f
2
(
t
)
,
…
,
f
n
(
t
)
)
T
\pmb{f}(t)=(f_1(t), f_2(t), \dots, f_n(t))^T
f(t)=(f1(t),f2(t),…,fn(t))T.
若
f
(
t
)
=
0
\pmb{f}(t)=\pmb{0}
f(t)=0, 则方程组 (3) 为齐次线性方程组。即
x
˙
(
t
)
=
A
(
t
)
x
(
t
)
.
(4)
\pmb{\dot{x}}(t)=A(t)\pmb{x}(t).\tag{4}
x˙(t)=A(t)x(t).(4)定理1(解的表示)
(i)若
φ
(
t
)
\varphi(t)
φ(t),
ψ
(
t
)
\psi(t)
ψ(t) 为齐次线性方程组 (4) 的解, 则
φ
(
t
)
\varphi(t)
φ(t),
ψ
(
t
)
\psi(t)
ψ(t)的任意线性组合
α
φ
(
t
)
+
β
ψ
(
t
)
\alpha \varphi(t)+\beta \psi(t)
αφ(t)+βψ(t) 也为齐次线性方程组 (A3) 的解,
α
,
β
\alpha, \beta
α,β 为任意的常数。
(ii)若
φ
∗
(
t
)
\varphi^*(t)
φ∗(t) 为非齐次线性方程组 (A2) 的一个特解,
ψ
(
t
)
\psi(t)
ψ(t) 为 (4) 的一个解,则(3)的任意一个解
x
(
t
)
x(t)
x(t) 可表示为
x
(
t
)
=
φ
∗
(
t
)
+
ψ
(
t
)
.
x(t)=\varphi^*(t)+\psi(t).
x(t)=φ∗(t)+ψ(t).定理2(解的存在唯一性) 设系数矩阵函数
A
(
t
)
A(t)
A(t) 和向量值函数
f
(
t
)
\pmb{f}(t)
f(t) 在定义区间
I
I
I 内连续,
t
0
∈
I
t_0\in I
t0∈I. 则
∀
ξ
=
(
ξ
1
,
ξ
2
,
…
,
ξ
n
)
T
∈
R
n
\forall \xi=(\xi_1, \xi_2,\ldots, \xi_n)^T\in R^n
∀ξ=(ξ1,ξ2,…,ξn)T∈Rn, 初值问题
x
˙
(
t
)
=
A
(
t
)
x
(
t
)
+
f
(
t
)
,
x
(
t
0
)
=
ξ
\pmb{\dot{x}}(t)=A(t)\pmb{x}(t)+\pmb{f}(t), x(t_0)=\xi
x˙(t)=A(t)x(t)+f(t),x(t0)=ξ在区间
I
I
I 上存在唯一解。
定义 (Wronsky 行列式) 设区间
I
I
I 上有向量值函数
φ
k
(
t
)
=
(
φ
1
k
(
t
)
,
φ
2
k
(
t
)
,
…
,
φ
n
k
(
t
)
)
T
,
(
k
=
1
,
2
,
…
,
n
)
\varphi_k(t)=(\varphi_{1k}(t), \varphi_{2k}(t), \ldots, \varphi_{nk}(t))^T, (k=1, 2, \ldots, n)
φk(t)=(φ1k(t),φ2k(t),…,φnk(t))T,(k=1,2,…,n) 称以这些向量值函数为列的行列式
d
e
t
(
φ
11
(
t
)
φ
12
(
t
)
…
φ
1
n
(
t
)
φ
21
(
t
)
φ
22
(
t
)
…
φ
2
n
(
t
)
⋮
⋮
…
⋮
φ
n
1
(
t
)
φ
n
2
(
t
)
…
φ
n
n
(
t
)
)
det\begin{pmatrix} \varphi_{11}(t)&\varphi_{12}(t)&\ldots&\varphi_{1n}(t)\\ \varphi_{21}(t)&\varphi_{22}(t)&\ldots&\varphi_{2n}(t)\\ \vdots&\vdots&\ldots&\vdots\\ \varphi_{n1}(t)&\varphi_{n2}(t)&\ldots&\varphi_{nn}(t) \end{pmatrix}
det
φ11(t)φ21(t)⋮φn1(t)φ12(t)φ22(t)⋮φn2(t)…………φ1n(t)φ2n(t)⋮φnn(t)
为向量值函数
φ
1
(
t
)
,
φ
2
(
t
)
,
…
,
φ
n
(
t
)
\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t)
φ1(t),φ2(t),…,φn(t) 的Wronsky行列式,记作
W
(
t
)
=
W
[
φ
1
(
t
)
,
φ
2
(
t
)
,
…
,
φ
n
(
t
)
]
.
W(t)=W[\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t)].
W(t)=W[φ1(t),φ2(t),…,φn(t)].定理 若向量值函数
φ
1
(
t
)
\varphi_1(t)
φ1(t),
φ
2
(
t
)
\varphi_2(t)
φ2(t),
…
\ldots
…,
φ
n
(
t
)
\varphi_n(t)
φn(t) 在区间
I
I
I 上线性相关, 则Wronsky行列式
W
[
φ
1
(
t
)
,
φ
2
(
t
)
,
…
,
φ
n
(
t
)
]
=
0
,
∀
t
∈
I
.
W[\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t)]=0, \forall t\in I.
W[φ1(t),φ2(t),…,φn(t)]=0,∀t∈I.
定理 设齐次线性方程组 (A3) 有
n
n
n 个解
φ
k
(
t
)
=
(
φ
1
k
(
t
)
,
φ
2
k
(
t
)
,
…
,
φ
n
k
(
t
)
)
T
,
(
k
=
1
,
2
,
…
,
n
)
\varphi_k(t)=(\varphi_{1k}(t), \varphi_{2k}(t),\ldots, \varphi_{nk}(t))^T, (k=1, 2, \ldots, n)
φk(t)=(φ1k(t),φ2k(t),…,φnk(t))T,(k=1,2,…,n)则以下条件等价:
(i)
φ
1
(
t
)
,
φ
2
(
t
)
,
…
,
φ
n
(
t
)
\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t)
φ1(t),φ2(t),…,φn(t) 在区间
I
I
I 上线性相关;
(ii)
W
[
φ
1
(
t
)
,
φ
2
(
t
)
,
…
,
φ
n
(
t
)
]
=
0
,
∀
t
∈
I
.
W[\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t)]=0, \forall t\in I.
W[φ1(t),φ2(t),…,φn(t)]=0,∀t∈I.
(iii)存在
t
0
∈
I
t_0\in I
t0∈I, 使得
W
[
φ
1
(
t
)
,
φ
2
(
t
)
,
…
,
φ
n
(
t
0
)
]
=
0.
W[\varphi_1(t), \varphi_2(t), \ldots, \varphi_n(t_0)]=0.
W[φ1(t),φ2(t),…,φn(t0)]=0.
定理
A
(
t
)
A(t)
A(t) 为区间
I
I
I 上连续的
n
×
n
n\times n
n×n矩阵函数,则一阶齐次线性常微分方程组(A3)的解集合是一个
n
n
n 维线性空间。
定义(基本解矩阵) 齐次线性常微分方程组(4)的
n
n
n 个线性无关解
φ
k
(
t
)
=
(
φ
1
k
(
t
)
,
φ
2
k
(
t
)
,
…
,
φ
n
k
(
t
)
)
T
,
(
k
=
1
,
2
,
…
,
n
)
\varphi_k(t)=(\varphi_{1k}(t), \varphi_{2k}(t),\ldots, \varphi_{nk}(t))^T, (k=1, 2, \ldots, n)
φk(t)=(φ1k(t),φ2k(t),…,φnk(t))T,(k=1,2,…,n)称为(A3)的一个基本解组。称矩阵
Φ
(
t
)
=
(
φ
11
(
t
)
φ
12
(
t
)
…
φ
1
n
(
t
)
φ
21
(
t
)
φ
22
(
t
)
…
φ
2
n
(
t
)
⋮
⋮
⋮
⋮
φ
n
1
(
t
)
φ
n
2
(
t
)
…
φ
n
n
(
t
)
)
\Phi(t)= \begin{pmatrix}\varphi_{11}(t)&\varphi_{12}(t)&\ldots&\varphi_{1n}(t)\\ \varphi_{21}(t)&\varphi_{22}(t)&\ldots&\varphi_{2n}(t)\\ \vdots&\vdots&\vdots&\vdots\\ \varphi_{n1}(t)&\varphi_{n2}(t)&\ldots&\varphi_{nn}(t)\\ \end{pmatrix}
Φ(t)=
φ11(t)φ21(t)⋮φn1(t)φ12(t)φ22(t)⋮φn2(t)……⋮…φ1n(t)φ2n(t)⋮φnn(t)
为齐次方程组 (4) 的一个基本解矩阵。
注: 已知 (4) 的一个基本解矩阵
Φ
(
t
)
\Phi(t)
Φ(t), 则 (4) 的通解可以表示为
x
(
t
)
=
Φ
(
t
)
c
x(t)=\Phi(t)c
x(t)=Φ(t)c. 其中
c
∈
R
n
c\in R^n
c∈Rn 为常变量。
设常系数齐次线性方程组
x
′
=
A
x
,
(5)
\pmb{x}^{'}=A\pmb{x},\tag{5}
x′=Ax,(5)
A
A
A 为
n
×
n
n\times n
n×n矩阵有非平凡解形如
x
(
t
)
=
e
λ
t
v
,
x(t)=e^{\lambda t}\pmb{v},
x(t)=eλtv,其中
λ
∈
R
\lambda\in R
λ∈R,
v
∈
R
n
\pmb{v}\in R^{n}
v∈Rn为常向量,
v
≠
0
\pmb{v}\neq0
v=0. 代入方程组(A4) 中得
λ
e
λ
t
v
=
A
e
λ
t
v
,
\lambda e^{\lambda t}\pmb{v}=Ae^{\lambda t}\pmb{v},
λeλtv=Aeλtv, 消去
e
λ
t
e^{\lambda t}
eλt 得
λ
v
=
A
v
,
\lambda \pmb{v}=A\pmb{v},
λv=Av,因为
v
≠
0
\pmb{v}\neq0
v=0,所以
λ
\lambda
λ 为矩阵
A
A
A 的特征值,而
v
\pmb{v}
v 为系数矩阵
A
A
A 的对应于特征值
λ
\lambda
λ 的特征向量。
定义 称
d
e
t
(
λ
I
−
A
)
det(\lambda I-A)
det(λI−A) 为方程组(5)的特征方程,它的根称为方程组的特征根。
定理(常系数齐次方程组基本解组表示)
A
A
A 为
n
×
n
n\times n
n×n 阶矩阵,若常系数齐次方程组(5)有
n
n
n 个实的线性无关的特征向量
v
k
(
k
=
1
,
2
,
…
,
n
)
v_k (k=1, 2, \ldots, n)
vk(k=1,2,…,n),且分别对应于系数矩阵
A
A
A 的(不同或相同的)实特征根
λ
k
(
k
=
1
,
2
,
…
,
n
)
\lambda_k(k=1, 2, \ldots, n)
λk(k=1,2,…,n)。则
φ
k
(
t
)
=
e
λ
k
t
v
k
,
k
=
1
,
2
,
…
,
n
,
(6)
\varphi_k(t)=e^{\lambda_kt}v_k, k=1, 2, \ldots, n, \tag{6}
φk(t)=eλktvk,k=1,2,…,n,(6)为常系数齐次方程组(5)的一个基本解组。
注1: 设
λ
\lambda
λ 是系数矩阵
A
A
A 的
m
m
m 重根, 而
v
k
(
k
=
1
,
2
,
…
,
m
)
\pmb{v}_k (k=1, 2, \ldots, m)
vk(k=1,2,…,m) 是与
λ
\lambda
λ 对应的
m
m
m 个线性无关的特征向量,则
e
λ
t
v
k
,
(
k
=
1
,
2
,
…
,
m
)
e^{\lambda t}\pmb{v}_k, (k=1, 2, \ldots, m)
eλtvk,(k=1,2,…,m) 是方程组 (5) 的
m
m
m 个线性无关的解。
注2: 若
λ
±
=
α
±
i
β
\lambda_{\pm}=\alpha\pm i\beta
λ±=α±iβ 是实系数矩阵
A
A
A 的一对共轭复根,
v
±
=
a
±
i
b
\pmb{v}_{\pm}=a\pm ib
v±=a±ib 是与之对应的特征向量(这里
a
,
b
a,b
a,b为向量), 则
e
λ
+
t
v
+
=
e
(
α
+
i
β
)
t
(
a
+
i
b
)
=
e
α
t
(
a
c
o
s
β
t
+
b
s
i
n
β
t
)
+
i
e
α
t
(
a
s
i
n
β
t
+
b
c
o
s
β
t
)
\begin{aligned}e^{\lambda_{+}t}\pmb{v}_{+}&=e^{(\alpha+i\beta)t}(a+ib)\\&=e^{\alpha t}(acos\beta t+bsin\beta t)+ie^{\alpha t}(asin\beta t+bcos \beta t)\end{aligned}
eλ+tv+=e(α+iβ)t(a+ib)=eαt(acosβt+bsinβt)+ieαt(asinβt+bcosβt)
e
λ
−
t
v
−
=
e
(
α
−
i
β
)
t
(
a
−
i
b
)
=
e
α
t
(
a
c
o
s
β
t
−
b
s
i
n
β
t
)
+
i
e
α
t
(
a
s
i
n
β
t
+
b
c
o
s
β
t
)
\begin{aligned}e^{\lambda_{-}t}\pmb{v}_{-}&=e^{(\alpha-i\beta)t}(a-ib)\\&=e^{\alpha t}(acos\beta t-bsin\beta t)+ie^{\alpha t}(asin\beta t+bcos \beta t)\end{aligned}
eλ−tv−=e(α−iβ)t(a−ib)=eαt(acosβt−bsinβt)+ieαt(asinβt+bcosβt)是方程组(5)的两个线性无关的复解。