读论文|| An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominate

在这里插入图片描述
在这里插入图片描述
摘要:我们已经开发了使用进化优化方法的多目标优化算法,并在涉及主要两个和三个目标的各种实际问题上展示了它们的优势。现在,对于处理具有四个或更多目标的优化问题,越来越需要开发进化多目标优化(EMO)算法。本文中,我们认识到一些最近的努力,并讨论了开发潜在的用于解决多目标优化问题的 EMO 算法的一些可行方向。之后,我们提出了一种基于参考点的多目标NSGA-II算法(我们将其称为NSGA-III),该算法强调群体成员既非支配又接近一组提供的参考点。提出的NSGA-III算法被应用于具有两个到15个目标的多目标测试问题,并与最近提出的EMO算法(MOEA/D)的两个版本进行了比较。尽管这两种 MOEA/D 方法在不同类型的问题上表现良好,但所提出的 NSGA-III 算法在本研究中被发现在所有考虑到的问题上都产生了令人满意的结果。本文展示了关于非约束问题的结果,后续文章将考虑在处理多目标优化问题时的约束和其他特殊情况。

I. INTRODUCTION
自上世纪90年代初以来,进化多目标优化(EMO)方法在不同的两个和三个目标优化问题中已经充分展示了其在找到一组良好收敛和良好多样化的非支配解上的优势。然而,在大多数涉及多个利益相关者和功能的实际问题中,往往存在许多涉及四个或更多目标的优化问题,有时需要有10到15个目标[1],[2]。因此,处理大量目标在过去几年一直是 EMO 领域的主要研究活动之一,这并不令人意外。许多目标问题对任何优化算法,包括 EMO,都提出了一些挑战。首先,非支配解在随机选择的目标向量集中所占比例随着目标数量的增加呈指数级增长。由于非支配解占据了大部分种群位置,任何保留精英解的 EMO 都面临着在种群中容纳足够数量的新解的困难。这会显著减慢搜索过程[3],[4]。其次,多样性保持运算(例如拥挤距离运算符[5]或聚类运算符[6])的实现成为一项计算代价高昂的操作。第三,对大维度前沿的可视化成为一项困难的任务,从而导致后续的决策任务和算法性能评估中的困难。为了解决这个问题,性能度量指标(例如超体积度量[7]或其他度量标准[3],[8])要么计算成本过高,要么可能没有意义。
那么一个重要的问题是,“EMO对于多目标优化问题是否有用?”尽管上述关于可视化和性能度量的第三个困难无法避免,但对现有的EMO算法进行一些算法上的改进可能有可能解决前两个问题。在本文中,我们回顾了一些关于设计多目标EMO的过去工作[9],[10],[11],[12],[13],[14],并概述了一些设计高效多目标EMO方法的可行方向。然后,**我们提出了一种新方法,该方法使用NSGA-II过程的框架[5],但与一组提供的或预定义的参考点一起工作,并展示了它在解决两个到15个目标的优化问题上的有效性。**在本文中,我们介绍了框架,并限制解决各种无约束问题,例如归一化、缩放、凸面、凹面、非连续,并且聚焦于帕累托最优前沿的一部分。在问题中可能存在许多这样的特性。因此,为这些可能性提供一个充分的算法测试仍然是一个重要的任务。我们将所提出的NSGA-III与现有的多目标 EMO(MOEA/D [10])的两个版本进行了性能比较,因为该方法与所提出的方法有些类似。关于 MOEA/D 和 NSGA-III 两个版本的工作原理,我们得到了一些有趣的见解。还对提出的 NSGA-III 算法在一些其他有趣的多目标优化和决策任务中进行了评估。在这篇论文的后续部分,我们建议将所提出的NSGA-III算法扩展用于处理多目标约束优化问题和其他一些特殊而具有挑战性的多目标问题。

在本文的剩余部分,我们首先讨论解决多目标优化问题的困难,然后尝试回答上面提出的有关EMO算法在处理多目标时的有用性的问题。之后,在第三部分,我们详细介绍了一些关于多目标优化的过去研究,包括最近提出的方法MOEA/D [10]。然后,在第四部分,我们详细概述了我们提出的NSGA-III过程。接下来,在第VA部分,我们展示了使用NSGA-III和两个MOEA/D版本在标准化DTLZ测试问题上的结果,目标数量最多为15个。随后,我们展示了在这里建议的缩放版本的DTLZ问题的结果。之后,在随后的几个部分中,我们将测试NSGA-III过程在不同类型的多目标优化问题上的表现。最后,NSGA-III被应用于第七节中涉及三个和九个目标问题的两个实际问题。本广泛研究的结论在第八节中得出。

II. MANY-OBJECTIVE PROBLEMS
大致上,多目标问题被定义为具有四个或更多目标的问题。而具有两个和三个目标的问题则属于另一类,因为在大多数情况下,所得的帕累托最优前沿可以通过图形手段全面地呈现。尽管对于多目标优化问题的目标数目是否存在严格的上限并不太清楚,除了少数情况[15]之外,大多数从业者对最多10到15个目标感兴趣。在本节中,首先我们讨论现有多目标进化算法在处理多目标问题时可能面临的困难,并探讨多目标优化算法是否在处理大量目标时真正有用。

A. Difficulties in Handling Many Objectives
A. 处理多目标问题的困难

在其他地方已经讨论过[4],[16],基于支配原则 [17] 的当前最先进的多目标进化优化算法可能面临以下困难:
1)大部分种群是非支配的:众所周知[3],[16],随着目标数量的增加,随机生成的种群中非支配的部分比例逐渐增大。由于大多数多目标优化算法强调种群中的非支配解,在处理多目标问题时,生成新解的空间相对较小。这减缓了搜索过程,因此整体而言,多目标优化算法的效率变得较低。

  1. 多样性度量的评估变得计算成本高昂:在确定种群中解决方案拥挤程度时,在高维空间中识别邻居变得计算成本高昂。为了加快计算速度,对多样性估计进行的任何妥协或近似可能导致最终解决方案分布不可接受。

3)重组操作可能效率低下:在多目标问题中,如果在大维空间中只有少数解可用,那么这些解可能彼此之间相距较远。在这样的种群中,重组操作的效果(被认为是多目标优化中的关键搜索操作)变得值得怀疑。两个相距较远的父代解可能会生成离父代解也较远的后代解。因此,可能需要特殊的重组操作(如交配限制或其他方案)来有效处理多目标问题。

4)折衷表面的表示困难:直观地认识到,要表示更高维度的折衷表面,需要指数级别更多的点。因此,需要较大的种群大小来表示由此产生的帕累托最优前沿。这对决策者来说可能很难理解并做出充分的决策以选择首选解决方案。

5)性能度量计算成本高昂:由于需要将高维点集相互比较以确定一个算法相对于另一个的性能,因此需要更大的计算工作量。例如,计算超体积度量需要随着目标数量呈指数增加而进行更多的计算[18],[19]。

6)可视化困难:最后,尽管这与优化直接相关,但最终对于多目标问题来说,更高维度的折衷前沿的可视化可能会变得困难。

前三个困难只能通过对现有多目标优化方法进行一定修改来缓解。第四、第五和第六个困难是所有多目标优化问题共有的,我们在这里未能充分解决它们。

B. EMO Methodologies for Handling Many-Objective Problems
B. 处理多目标问题的多目标优化方法
在我们讨论上述三个困难的可能解决方法之前,我们在这里强调两种不同的多目标问题类别,对于这两类问题,现有的多目标优化方法仍然可以使用。

首先,现有的多目标优化算法仍然可能在从完整帕累托最优集中找到首选解决方案子集(部分集)方面发挥作用。尽管首选子集仍然是多维的,由于目标解决方案集中在帕累托最优前沿的一个小区域内,通过这一原则,大多数上述困难将会得到缓解。已经设计了许多基于多准则决策(MCDM)的多目标优化方法,用于实现这一目的,并且在高达 10 目标的问题上的结果表明其性能良好 [20],[21],[22],[23]。

其次,实际中的许多问题,尽管具有许多目标,通常会退化为具有低维帕累托最优前沿的问题[4],[11],[24],[25]。在这类问题中,可以将冗余目标的识别与 EMO 集成在一起,以找到低维度的帕累托最优前沿。由于最终前沿降低到两个或三个维度,现有的多目标优化方法应该能够有效地处理这类问题。先前对带有 基于主成分分析(PCA)的过程的 NSGA-II 的研究[4]能够解决高达50个目标的问题,其中有一个两个目标的帕累托最优前沿。

C. Two Ideas for a Many-Objective EMO
C. 用于多目标进化多目标优化的两个想法

考虑到基于支配的EMO程序所涉及的前三个困难,可以考虑两种不同的策略来缓解这些困难:

使用特殊的支配原则:上述提到的第一个困难可以通过使用一种特殊的支配原则来缓解,该原则将自适应地离散化帕累托最优前沿并找到一个分布良好的点集。例如,使用ǫ-支配原则[26],[27]将使得与一组帕累托最优点在ǫ距离内的所有点都被ǫ-支配,因此该过程将生成一组有限的帕累托最优点作为目标。这样的考虑也将缓解多样性保持的第二个困难。通过使用配对限制方案或强调近邻父代解的特殊重组方案(例如具有大分布指数的SBX [28])可以处理第三个困难。还可以尝试使用其他特殊的支配原则[29],[30]。Aguirre和Tanaka [31]以及Sato等人 [32]建议使用目标子集进行支配检查,并在每一代中使用不同的目标组合。还可以尝试使用固定锥体支配[33],[34]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值