python实现LDA主题分类模型

LDA(Latent Dirichlet Allocation)是一种常用的主题模型,它可以帮助我们从大量文本数据中发现隐藏的主题信息。
需要的库

import pandas as pd
import matplotlib.pyplot as plt
import jieba
import jieba.posseg as pseg
from gensim.corpora import Dictionary
from gensim.models import LdaModel
import os
import re
import pyLDAvis.gensim_models

ScenicSpotReviewAnalysis类

class ScenicSpotReviewAnalysis:
    def __init__(self, data_path, stopwords_path):
        self.data_path = data_path # txt路径
        self.stopwords = self._load_stopwords(stopwords_path) # 停用词
        self.all_texts = self._load_data() # 加载数据
        self.dictionary = None # 初始化词典
        self.corpus = None # 初始化语料库

    def _load_stopwords(self, path):
        # 加载停用词
        with open(path, encoding="utf8") as f:
            stopwords = f.read().split("\n")
        stopwords.append("\n")
        # 添加要排除的特定词语
        extra_stopwords = ['地方', '总体', '真的', '建议','小时','一座','建议']
        stopwords.extend(extra_stopwords
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值