【对称分量法应用】已知A、B、C三相电压或电流幅值和相位,求某一相的正序、负序、零序分量。

 前置条件:由电工基本原理可知,一组不对称的电气量可分解为正序、负序、零序三组电气分量,FA=FA1+FA2+FA0,FA1为正序分量,FA2为负序分量,FA0为零序分量,例:

 另外我们知道当A、B、C三相幅值相等,且按正序排列时,如下所示

所以\dot{I_{B}}= \alpha ^{2}\dot{I_{A}} ,\dot{I_{C}}= \alpha \dot{I_{A}}\alpha为单位相量算子,\alpha = e^{^{j120^{\circ}}}

\because

\therefore I_{A}=I_{A1}+I_{A2}+I_{A0} 

\begin{matrix} \\ I_{B}=I_{B1}+I_{B2}+I_{B0}=\alpha^{2} I_{A1}+\alpha I_{A2}+I_{A0} \\ I_{C}=I_{C1}+I_{C2}+I_{C0}=\alpha I_{A1}+\alpha^{2} I_{A2}+I_{A0} \end{matrix} 

因此,当知道A、B、C三相的幅值和相位时,即可求得其各序分量。如下:

 

 因此,我们可以推导出:

\left\{\begin{matrix} \\ 3I_{A0}=I_{A}+I_{B}+I_{C} \\ 3I_{A1}=I_{A}+\alpha I_{B}+\alpha^{2} I_{C} \\ 3I_{A0}=I_{A}+\alpha^{2} I_{B}+\alpha I_{C}\end{matrix}\right.

也就是各序分量的值,另外从中可以看出,当全量电流为零时,其中的分量并不为零。

并且可以从相量图的角度来理解,零序相量图中,三相相位相同,直接相加除以3即为A相零序分量;正序相量图中,B相滞后A相120°,C相超前A相120°,所以B相乘以\alpha,C相乘以\alpha ^{2},与A相同相位后,除以3即为A相正序分量;负序相量图中,C相滞后A相120°,B相超前A相120°,所以C相乘以\alpha,B相乘以\alpha ^{2},与A相同相位后,除以3即为A相负序分量。

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值