三相对称分量法详细推导

1.前言

最近在研究广义二阶积分器,发现了要用到对称分量法,但是在网上没找到详细的说明,废了好大功夫解决之后我也把我的分析过程分享出来,希望能帮到大家,另今天是冬至,大家冬至快乐呀哈哈哈

2.正文

对称分量法是什么呢?总的来说就是把三相不平衡的的量都分解成三相对称的正序,负序,零序相量,这样就可以把不平衡的问题当成平衡的问题来讨论。
我们可以看到下面这张图,正序的相序是acb,负序是abc,零序abc的相位都一样。
在这里插入图片描述

那么为了方便我们的分析,我们定义正序分量为Va1,Vb1,Vc1;负序分量为Va2,Vb2,Vc2;零序分量为Va0,Vb0,Vc0。那么实际的电压Va,Vb,Vc就是等于这三个分量的合成也就有:
在这里插入图片描述
(1)
对于正序,我们由上面的图2-7也可以得到以下公式,公式中 为相位移算子,即
在这里插入图片描述
(2)
对于负序,我们也可以得到以下公式
在这里插入图片描述
(3)
我们接下来能干啥呢,我们可以检测三相电压,根据我们的变换矩阵把三相电压的正序负序零序给计算出来。
那我们先求A相的正序分量Va1,我们用传感器检测回来的是Ua,Ub,Uc的实时电压,所以我们要基于这个前提来进行讨论。怎么做?我们直接把(1)中的Vb,Vc全部用(2)和(3)的公式换成Va,过程如下所示:
在这里插入图片描述
(4)
我们要把Va1给分离出来,怎么做呢?我们引入以下公式:
在这里插入图片描述
(5)
那么可得以下公式
在这里插入图片描述
(6)
对于Ub1和Uc1也是同理,那么可得:
在这里插入图片描述
(7)
那么同理也可得到负序和零序的关系为:
在这里插入图片描述
(8)
在这里插入图片描述
(9)
至此所有内容都证明完毕了,那么相信大家在论文看到这个矩阵的时候也不会那么陌生

3.结论

本文推导了对称分量法的公式以及分享了分析思路,本文中的图来自赤木泰文的《Instantaneous Power Theory and Applications to Power Conditioning》,大家冬至快落~另外这是我建的QQ群大家有问题可以直接留言我看到一定及时回复,想要一起讨论的一起进群吧哈哈哈,群号为:974764233
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值