<数学拾遗>1.卷积的形象化理解

1.卷积的深入理解

这里我是参考了bili的讲解视频,视频链接在下方.

1.1 先考虑离散变量

假设我们有两张成绩单代表两门课的成绩,成绩为百分制,而你每一门课获得每一个对应的分数的概率都不相同,比如你是一个学习好的学生,那么你取得90的概率就要比学习差的同学高。这个时候我们提出这样一个问题:小明同学两门课获得的总分是165的概率是多少?

这种情况下怎么计算这个概率呢?

获得165有很多情况:比如第一科100,第二科65;第一科99,第二科66;第三科98,第四科67;。。。。。通过这样枚举的方式,我们可以把小明获得165的所有情况通通列出来,公式如下:
p ( 165 ) = P 1 ( 100 ) P 2 ( 65 ) + P 1 ( 99 ) P 2 ( 66 ) + P 1 ( 98 ) P 2 ( 67 ) . . . . . + p 1 ( 65 ) P 2 ( 100 ) p(165) = P_1(100)P_2(65)+P_1(99)P_2(66)+P_1(98)P_2(67).....+p_1(65)P_2(100) p(165)=P1(100)P2(65)+P1(99)P2(66)+P1(98)P2(67).....+p1(65)P2(100)
那么如果我们想要求小明获得任意分数n的表达式,它的通用的表达式应该是如下:

p ( n ) = ∑ i = t i = n − t p 1 ( t ) P 2 ( n − t ) p(n) = \sum_{i=t}^{i =n-t}{p_1(t)}{P_2(n-t)} p(n)=i=ti=ntp1(t)P2(nt)

注意这里的t是有取值范围的,对于特定的情况取特殊的范围,比如小明考165的分数的概率,那么t就是从·65开始,同时还要注意这里是要累加号的,因为小明考165,有很多种情况,需要把所有的情况累计起来。现在我们将这种情况普遍化,并且不仅仅考虑概率的模型,而是任意的两个函数,那么公式就是这样:
y ( n ) = ∑ i = − ∞ ∞ x ( t ) h ( n − t ) y(n) = \sum_{i=-\infty}^{\infty}{x(t)}{h(n-t)} y(n)=i=x(t)h(nt)
这就是我们信号与处理中常见的那个离散信号的处理公式,这个公式的意义相信根据上面的举例我们也可以总结得到:卷积公式就是求某一点n,在另外一个空间中的映射,但是这种映射关系取决于i从t累加到n-t的两个函数乘积之和。也就是某一个点上的信号,是要等于很多个点的映射信号之和,而不仅仅是简单的两个函数在某点的乘积的和。解释的通俗化一点:信号是会受前面的信号的影响的。
以上所讲,最重要的是理解第二个公式,也就是进行泛化之后的公式。

1.2 现在考虑连续变量:

但是我们所考虑的这个模型比较难以理解,所以先将从这个连续变量的模型抽样离散化分析,分析完离散情况我们再进行延拓。

假设我在不停的摄入食物,同时也在不停的消化,摄入食物的函数是一个随时间变化的随机函数,消化函数是一个指数小于1的指数函数,表示从摄入食物以后,随着时间的增长,我的消化能力的变化。

请添加图片描述

如图 所示的函数

假设我要求吃了食物15分钟之后,我自身所累计的食物是多少?注意我在吃的同时也在消化,所以这种情况我们的思路应该是计算前面我摄入的食物和对应的吃完食物后开始计时所消化的食物,然后把它们累加起来,为了简单化,我们先考虑成离散情况,计算每一分钟吃的东西和消化的食物:

第 15 分钟时,我吃的食物为y1(15),但此时我刚刚吃下的食物,消化的程度对应的是下面函数在0时刻对应的值y2(0)

我第15分钟时吃了食物,那前面我是不是也吃了东西,是不是也要算进去?注意我们吃食物是服从上面那个函数的,既然我已经吃到了第15分钟了,证明我前面也吃了,所以

第14分钟时,我吃的食物为y1(14),这时,我吃的食物已经消化了一分钟了,此时我的消化函数的数值变了,对应的我的消化的程度是y2在t =1 时刻对应的值。

。。。。

第1分钟时,我吃的食物为y1(1),消化的程度是y2(14);

第0分钟,吃的食物Y1(0),消化程度y2(15)

所以此时,我们到第15分钟时的食物摄入量Z(15)为:

z ( 15 ) = ∑ i = 0 i = 15 y 1 ( i ) y 2 ( 15 − i ) z(15) =\sum_{i=0}^{i =15}{y1(i)y2(15-i)} z(15)=i=0i=15y1(i)y2(15i)

这里我们求的是第15分钟,如若是任意时刻n呢?上面的公式是不是就变成了:

z ( n ) = ∑ i = − ∞ i = ∞ y 1 ( i ) y 2 ( n − i ) z(n) =\sum_{i=-\infty}^{i =\infty}{y1(i)y2(n-i)} z(n)=i=i=y1(i)y2(ni)

我们再讲情况普遍化一点,上面吃饭为了简化,考虑的是离散情况,如果是连续情况下的任意时刻n的摄入食物的值应该是多少?这个时候就要积分了,公式为:

Z ( n ) = ∫ − ∞ ∞ y 1 ( τ ) y 2 ( n − τ ) d τ Z(n) = \int_{-\infty}^{\infty}{y1(\tau)y2(n-\tau)}d\tau Z(n)=y1(τ)y2(nτ)dτ

这种特殊的形式我们表示称之为卷积积分,其实这个==n跟 τ \tau τ是一样的,只是这里积分的时候为了区分,我们写成了两个符号,我们通用的教材了其实用的更多的是t,也就是t跟$\tau $,我们要明白,其实它们是同一个量,不要在积分符号里面看到两个量就害怕了。==Z(n)也可以用y1(t)*y2(t)表示。

详细的视频讲解可以参考哔哩哔哩考研数学小元老师的视频

<【小动画】彻底理解卷积【超形象】卷的由来,小元老师_哔哩哔哩_bilibili>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值