概率论之正态分布与泊松分布

一、正态分布函数(也称高斯分布函数,PDF)(单变量):

        即描述了一个连续随机变量的分布情况,其中每个变量代表样本空间中的一个可能取值。在正态分布函数中,通常会涉及以下几个变量:

        x:这是随机变量,表示正态分布中的一个可能的取值。对于给定的正态分布,x 的取值范围通常是负无穷到正无穷。

        μ:这是正态分布的均值,表示整个分布的中心位置。均值确定了分布的位置。

        σ:这是正态分布的标准差,用于衡量分布中值的离散程度或分散程度。标准差越大,分布越分散。

        σ²:这是方差,即标准差的平方。方差也是衡量数据的离散程度的一种指标,它与标准差的关系是 σ²=σ×σ。

        Φ(x;μ,σ2):这是正态分布函数,表示随机变量 x 在给定均值 μ 和方差 σ² 下的概率密度函数值。可以使用积分计算累积分布函数(CDF),即给定一个值 x,计算所有小于或等于 x 的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值