利用欧拉公式和Sa(x)函数 进行含 e 复杂表达式的化简

在这里插入图片描述

我们已经得到了以下表达式:
X ( j ω ) = A − j ω ( e − j ω τ 2 − e j ω τ 2 ) X(j\omega) = \frac{A}{-j\omega} \left( e^{-j\omega \frac{\tau}{2}} - e^{j\omega \frac{\tau}{2}} \right) X()=A(e2τe2τ)

现在我们需要进一步简化这个表达式:

  1. 利用欧拉公式将指数形式转换为三角函数形式:
    欧拉公式告诉我们:
    e j x = cos ⁡ ( x ) + j sin ⁡ ( x ) e^{jx} = \cos(x) + j\sin(x) ejx=cos(x)+jsin(x)

    e − j x = cos ⁡ ( x ) − j sin ⁡ ( x ) e^{-jx} = \cos(x) - j\sin(x) ejx=cos(x)jsin(x)

  2. 应用欧拉公式:
    我们的表达式变成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值