我们已经得到了以下表达式:
X ( j ω ) = A − j ω ( e − j ω τ 2 − e j ω τ 2 ) X(j\omega) = \frac{A}{-j\omega} \left( e^{-j\omega \frac{\tau}{2}} - e^{j\omega \frac{\tau}{2}} \right) X(jω)=−jωA(e−jω2τ−ejω2τ)
现在我们需要进一步简化这个表达式:
-
利用欧拉公式将指数形式转换为三角函数形式:
欧拉公式告诉我们:
e j x = cos ( x ) + j sin ( x ) e^{jx} = \cos(x) + j\sin(x) ejx=cos(x)+jsin(x)
和
e − j x = cos ( x ) − j sin ( x ) e^{-jx} = \cos(x) - j\sin(x) e−jx=cos(x)−jsin(x) -
应用欧拉公式:
我们的表达式变成: