一、前言
欧拉公式由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)于18世纪提出。它是数学里最令人着迷的公式之一,它将数学里最重要的几个常数联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。
二、欧拉公式
欧拉公式也叫欧拉恒等时:
e i π + 1 = 0 e^{iπ}+1=0 eiπ+1=0
欧拉公式的核心表达式即连接复指数函数与三角函数的核心关系式:
e
i
θ
=
c
o
s
(
θ
)
+
i
∗
s
i
n
(
θ
)
e^{iθ}=cos(θ)+i*sin(θ)
eiθ=cos(θ)+i∗sin(θ)
那么如何理解欧拉公式呢,通过上式我们发现欧拉公式涉及主要有两点:
(1)复数、复指数;
(2)三角函数
1. 首先说一下复数,一般将复数定义如下:
形如a+bi(a、b均为实数)的数为复数,其中,a被称为实部,b被称为虚部,i为虚数单位。复数通常用z表示,即z=a+bi。
复数主要出现在数学运算中,其可以简化数学运算,并便于将许多工程应用映射到数学公式中。
2.再说一下三角函数:
角函数是基本初等函数之一,其所有函数的理论以圆为基础,在数学上可反映不同角度下幅度的变化,在现实工程应用中,其可反映在不同时间条件下信号的变化。
三、欧拉公式与sin cos
对于单独的sin(t)或者cos(t)函数,其反映的是二维空间上的变化,而 e i t e^{it} eit反映的是三维空间中的变化。
为什么欧拉公式实部是cos,虚部时sin,其实其表示的是初始相位为零的单位旋转向量,在实数轴上和虚数轴上投影 。在向量旋转起来后,分别在实数轴上和虚数轴可得到随时间变化的cos和sin。
逆时针旋转时(对应欧拉公式定义):
e
i
w
t
=
c
o
s
(
w
t
)
+
i
∗
s
i
n
(
w
t
)
e^{iwt}=cos(wt)+i*sin(wt)
eiwt=cos(wt)+i∗sin(wt)
顺时针旋转时:
我们参考逆时针旋转方向取反
e
−
i
w
t
=
c
o
s
(
w
t
)
−
i
∗
s
i
n
(
w
t
)
e^{-iwt}=cos(wt)-i*sin(wt)
e−iwt=cos(wt)−i∗sin(wt)
不同方向结果共轭。
将以上映射到3维空间
从上图可以看到,
e
i
w
t
e^{iwt}
eiwt在实际三维空间上为一个随时间螺旋,像一个弹簧一样。在Y轴的投影为一个正弦波sin,在X轴的投影为一个正弦波cos。
四、欧拉公式变式
主要是 c o s ( w t ) cos(wt) cos(wt)和 s i n ( w t ) sin(wt) sin(wt)的复指数表达式:
c o s ( w t ) = 1 2 ( e i w t + e − i w t ) cos(wt)=\frac{1}{2}(e^{iwt} + e^{-iwt}) cos(wt)=21(eiwt+e−iwt)
s i n ( w t ) = 1 2 i ( e i w t − e − i w t ) = i 2 ( e − i w t − e i w t ) sin(wt)=\frac{1}{2i}(e^{iwt} - e^{-iwt})=\frac{i}{2}(e^{-iwt} - e^{iwt}) sin(wt)=2i1(eiwt−e−iwt)=2i(e−iwt−eiwt)
结合第三章欧拉公式,通过以上公式可以发现: c o s ( w t ) cos(wt) cos(wt)和 s i n ( w t ) sin(wt) sin(wt)为幅度为1/2、旋转方向相反(角度相反)两个圆旋转的线性叠加。这也是fft变换出现负频谱的原因。
对于 c o s ( w t ) cos(wt) cos(wt),因 c o s ( w t ) = c o s ( − w t ) cos(wt)=cos(-wt) cos(wt)=cos(−wt),所以两个圆的叠加不用取反,直接相加,抵消的虚部sin部分,同时cos部分幅度增加1倍;
对于 s i n ( w t ) sin(wt) sin(wt),因 s i n ( w t ) = − s i n ( − w t ) sin(wt)=-sin(-wt) sin(wt)=−sin(−wt),所以两个圆的叠加中一个方向需要取反再相加,抵消的实部cos部分,同时sin部分幅度增加1倍;