状态空间模型是一种用状态变量描述动态系统行为的统一表示方法,适用于单输入单输出(SISO)系统和多输入多输出(MIMO)系统。通过状态方程和输出方程,它将系统的输入、输出和内部状态关联起来,便于分析和设计系统的动态特性,广泛应用于控制理论、信号处理和复杂工程系统中。
状态空间模型的基本概念
状态变量
状态变量是用来描述系统当前状态的一组变量。它们捕捉了系统的所有动态特性,以便预测未来的行为。状态变量的数量等于系统的阶数。
状态方程和输出方程
状态空间模型用两个方程来描述系统:状态方程和输出方程。
- 状态方程:描述系统状态随时间的变化。
- 输出方程:描述系统输出与状态及输入的关系。
数学上,这两个方程通常表示为:
x ˙ ( t ) = A x ( t ) + B u ( t ) y ( t ) = C x ( t ) + D u ( t ) \begin{aligned} \dot{x}(t) &= A x(t) + B u(t) \\ y(t) &= C x(t) + D u(t) \end{aligned} x˙(t)y(t)=Ax(t)+Bu(t)=Cx(t)+Du(t)
其中:
- ( x(t) ) 是状态向量,描述系统的状态。
- ( u(t) ) 是输入向量,描述系统的输入。
- ( y(t) ) 是输出向量,描述系统的输出。
- ( A ) 是状态矩阵,描述状态变量之间的关系。
- ( B ) 是输入矩阵,描述输入如何影响状态。
- ( C ) 是输出矩阵,描述状态如何影响输出。
- ( D ) 是直接传递矩阵,描述输入直接影响输出的部分(在很多情况下为零)。
单输入单输出(SISO)系统
在单输入单输出系统中,系统只有一个输入和一个输出。对于SISO系统,状态空间模型的形式可以简化,但其基本结构仍然是相同的。具体形式为:
x ˙ ( t ) = A x ( t ) + b u ( t ) y ( t ) = c x ( t ) + d u ( t ) \begin{aligned} \dot{x}(t) &= A x(t) + b u(t) \\ y(t) &= c x(t) + d u(t) \end{aligned} x˙(t)y(t)=Ax(t)+bu(t)=cx(t)+du(t)
其中 ( b ) 是列向量,( c ) 是行向量。
多输入多输出(MIMO)系统
在多输入多输出系统中,系统有多个输入和多个输出。这种系统的状态空间模型能够同时处理多个输入和输出,适用于更加复杂的系统。具体形式为:
x ˙ ( t ) = A x ( t ) + B u ( t ) y ( t ) = C x ( t ) + D u ( t ) \begin{aligned} \dot{x}(t) &= A x(t) + B u(t) \\ y(t) &= C x(t) + D u(t) \end{aligned} x˙(t)y(t)=Ax(t)+Bu(t)=Cx(t)+Du(t)
在这种情况下,( B ) 矩阵和 ( D ) 矩阵的维度要匹配输入向量 ( u(t) ) 的维度,而 ( C ) 矩阵和 ( D ) 矩阵的维度要匹配输出向量 ( y(t) ) 的维度。
状态空间模型的优点
- 统一的表示方法:状态空间模型能够统一地描述SISO和MIMO系统。
- 【Star】处理非线性系统:尽管最常见的是线性系统模型,状态空间方法也可以扩展到非线性系统。
- 系统分析和设计:状态空间模型便于进行系统的稳定性、可控性、可观测性分析。
- 适用于现代控制理论:许多现代控制方法,如状态反馈控制、卡尔曼滤波器等,都基于状态空间模型。
实例
简单的SISO系统
考虑一个简单的质量-弹簧-阻尼器系统,其状态空间模型可以表示为:
[ x ˙ 1 x ˙ 2 ] = [ 0 1 − k m − b m ] [ x 1 x 2 ] + [ 0 1 m ] u ( t ) y ( t ) = [ 1 0 ] [ x 1 x 2 ] \begin{aligned} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{aligned} [x˙1x˙2]y(t)=[0−mk1−mb][x1x2]+[0m1]u(t)=[10][x1x2]
其中,( x_1 ) 是位移,( x_2 ) 是速度,( k ) 是弹簧常数,( m ) 是质量,( b ) 是阻尼系数。
复杂的MIMO系统
考虑一个多输入多输出的机械臂系统,其状态空间模型可能包含多个角度和角速度的状态变量,多个电机的输入,以及多个关节的位置和速度的输出。具体矩阵 ( A )、( B )、( C )、( D ) 的维度和元素将根据系统的具体结构和参数来确定。
状态空间模型是一种强大的系统建模方法,适用于各种类型的动态系统,包括单输入单输出(SISO)系统和多输入多输出(MIMO)系统。它通过状态变量的引入,统一了系统的描述方式,简化了复杂系统的分析和设计过程。