供应链|库存定位的高效策略:如何巧妙调换安全库存换取服务速度?

在这里插入图片描述

论文作者:Hanzhang Qin, David Simchi-Levi, Ryan Ferer, Jonathan Mays, Ken
Merriam, Megan Forrester, Alex Hamrick

论文解读者:马玺渊 王艺桦

编者按

本次解读的文章发表于 Production and Operations Management,原文信息:Hanzhang Qin, David Simchi-Levi, Ryan Ferer, Jonathan May, Ken Merriam, Megan Forrester, Alex Hamrick (2022) Trading safety stock for service response time in inventory positioning. https://doi.org/10.1111/poms.13869

文章研究了在线零售环境下需求对服务响应时间敏感的库存布局 (inventory positioning) 优化问题。 该问题的主要挑战是要将由缩短交货时间带来的收益和因库存更接近市场需求而增加的库存成本此二者实现最佳平衡。

为预测服务响应时间变化下需求变化的影响,文章提出了需求预测和弹性模型来量化特定产品类别的需求敏感性。 另一方面,通过将产品库存定位至接近市场需求的位置来缩短响应时间可能会增加库存成本。

因此,文章进一步通过数据驱动的两阶段随机规划方法,来补充上述需求预测和弹性模型。该方法可以最佳地平衡安全库存与服务响应时间,从而增加收益。 文章通过北美一家电子商务零售商提供的数据来说明所提出方法的影响——其可作为供应链工作中的通用决策支持工具,完成库存网络的优化,以便每天为商店、配送中心和仓库生成建议的库存水平。

1 问题介绍

根据联合国贸易和发展会议的数据,电子商务行业在所有零售额中的份额大幅上升(仅 2020年,其从16% 增长至19%), 因此越来越多的在线零售商开始意识到优化供应链网络在提高在线销售渠道数字交易效率的重要性。 这为文章研究提供背景,其主要关注零售商如何在需求对服务响应时间敏感的环境中,利用数据来优化库存布局决策。而在电子商务平台中,大量在线购物者十分注重便利性和效率,因此他们的需求对交货时间高度敏感。 那么,在线零售商面临的一个关键挑战是使其供应链网络能够对需要快速交货的不确定需求做出高度响应,同时保持合理的运营成本水平。

为了进一步说明为配送时间来交割安全库存的想法,文章提供了一个简单的包含两个配送中心 (distribution centre, DC) 的示例。 假设某零售商有两个DC,分别位于A、B两区域,二者需求遵循相同的正态分布,该分布取决于是否有DC直接为零售商提供服务——若有,则需求服从 N ( μ h , σ h 2 ) \mathcal{N}(\mu_h,\sigma^2_h) N(μh,σh2),其中 μ h \mu_h μh σ h 2 \sigma^2_h σh2分别为正态分布的期望和标准差;若无,则服从 N ( μ l , σ l 2 ) \mathcal{N}(\mu_l,\sigma^2_l) N(μl,σl2). 假设A区和B区的需求是相互独立的,并且如图1,可通过 μ h > μ l \mu_h>\mu_l μh>μl来反映快速交付的价值。


图1:两区问题中的集中式策略与分散式策略

文章研究方法中所涉及到的库存共享 (inventory pooling) 概念,已被大量文献研究讨论,其历史可以追溯到 Eppen(1979), Eppen(1979)的经典分析描述了使用集中配送中心优势的平方根定律,其中集中安全库存水平仅以零售商数量的平方根的大小增长。之后大量文献针对轻尾需求、重尾需求、分布稳健的环境以及规避风险的决策者等不同情况进行了进一步讨论。针对更复杂的环境,研究者们提出联合地点库存模型 (joint location-inventory model),其中运营配送中心的固定成本和运输产品的运输成本也在配送中心网络设计中考虑。

另一方面,文献表明,快速配送不仅可以提高客户满意度,还可促进在线商店销售,因此,提供快速配送的能力对零售业也具有重大的业务影响。

据此背景,文章提出一种综合方法来优化服务敏感需求的库存配置:首先通过来自匿名零售商的历史交易数据和回归树为不同产品类别开发需求预测模型,进而使用需求预测数据来计算需求的服务水平弹性,并将其作为两阶段随机规划问题的输入,以最大化利润。

为了解服务响应时间潜在变化下的需求敏感性,文章需要开发基于数据的需求模型。 文章所采用的的需求分析方法建立回归树方法 (regression tree method) 和非参数保形等渗回归 (non-parameteric shapepreserving isotonic regression) 基础上。

值得注意的是,库存共享和快速交付的本质上是矛盾的,因为库存共享建议集中备货(以聚集安全库存),而快速交付则建议分散备货(令安全库存更贴近客户) 。 为平衡二者关系,文章提出两阶段随机模型,其中假设需求是从潜在的概率分布中随机抽取的。鉴于需要根据订单数量做出决策以满足产品的随机客户需求,该模型可视为多地点报童问题的广义版本,而新模型的优势在于,其解决了不确定需求(需求取决于 DC 和客户区域之间的距离)在计算上产生的挑战性。

总结来说,文章所关注的问题与解决方法如下。

缩短交货时间带来的收入收益和因库存更接近市场需求而增加的库存成本之间的最佳权衡是什么?

文章通过优化模型,解决了增加收入和管理运营成本之间的紧张关系,该模型能够评估将每个客户区域分配给配送中心的任何可行策略所产生的预期利润。

更具体而言,如图2所示,这种紧张的关系可以重新解释为对于特定产品的库存,倾向于采用分散式策略或集中式策略。因将库存放置在离客户更近的地方,分散式策略最大限度地提高了快速交付服务客户的## 标题能力,进而提高销售额/收入。 然而,由于风险分担效应,集中式策略因为其较低的安全库存水平,往往会节省运营成本。


图2:中心化和去中心化策略之间的关系

2 需求预测与弹性模型

2.1 数据与假设

文章获取了2019年年初到年底的销售交易数据,其中每条数据记录代表零售商网站上带有时间戳的商品销售,包括每个SKU (stock keeping unit) 的销售数量、价格、出发地和目的地邮政编码(共33092个邮政编码)以及承诺和实现的交货时间。 此外,文章还对所售商品进行层次结构分类:将每个商品聚合为一个SKU,SKU聚合形成子类,子类聚合形成类,类聚合形成部门。 在后续预测模型中,为了提高预测准确性,文章选择在子类级别聚合项目,并预测每个子类的需求。

除数据外,在详细阐述需求预测和弹性模型之前,文章列出了整篇论文中对客户需求模型所做的主要假设。

假设1:需求预测和弹性模型是使用仅通过零售商直接面向客户的分销网络发生的销售交易进行训练的。 不包括供应商对客户的销售。

文章只使用反映零售商配送中心直接发货的销售数据的主要原因是,作者们认为,这部分数据真实地反映了作为承诺天数函数的基础销售。 证据显示,从81个产品子类的抽样销售分布中,零售商DC直接履行的销售(不包括保证当日送达的销售)随着承诺天数的增长而减少(如图3)。 具体来说,50%的销售承诺天数少于3天。 然而,供应商履行的销售分布却大不相同——50%的销售承诺天数在7至14天之间,而且整体销售在承诺天数上似乎并不单调。 造成这种显着差异的根本原因主要是由于大多数供应商无法承诺较短的交货时间,因此供应商履行的销售有所删失。


图3:81 个随机抽样产品子类的销售分布,分别由零售商DC(左)和供应商(右)执行

假设2:不考虑全渠道零售带来的替代/互补效应和运营变化。

研究表明,全渠道零售存在替代/互补效应。而文章的目标不仅是提供预测分析,还为零售商提供预测分析,以利用其数据来优化库存布局决策,所以文章建立该假设,以排除全渠道效应。

2.2 使用回归树和等渗回归估计需求

文章作者与零售商供应链分析团队共同开发了需求预测模型的功能如下:
demand = E f ( Price, Promised Days, Population ) + ε . \text{demand}=\mathbb{E}f(\text{Price, Promised Days, Population}) + \varepsilon. demand=Ef

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值