优化 | 用共正规划求解二次非凸优化问题

在这里插入图片描述

1. 背景

如何求解非凸优化问题,一直是无数学者冥思苦想的问题。事实上,一般的非凸优化问题大概率是NP-hard的,所以,除非P=NP,否则想要用通用的求解方法来在有限时间内求解,几乎是不可能的。然而,对于非凸优化中相对比较简单的部分,我们可以找到一些转换方法,来巧妙地进行求解。比如混合0-1非凸二次规划(mixed binary nonconvex quadratic program),就可以用本文介绍的共正规划(Copositive Programming,CP)方法来解决。

具体来说,CP是半定规划 (Semidefinite Programming, SDP)的一个推广,通过CP方法,混合0-1非凸二次规划问题可以被转化成一个有线性目标函数且带completely positive约束的凸问题。这一转换方法适用于许多组合优化、鲁棒优化问题的模型特点,为解决这些问题提供了一种思路。

本文借鉴了https://zhuanlan.zhihu.com/p/34772469的结构,并在此文的基础上,对CP的思路做了更详细的解释,并进行了延伸和拓展。因为篇幅有限,证明过程请读者参阅参考文献。

2. 如何用共正规划求解二次非凸优化问题

在正式介绍CP之前,我们先定义以下的记号。我们定义
C q : = { X ∈ R q × q : X = X T , v T X v ≥ 0 , ∀ v ∈ R + q } \mathcal{C}_q:=\left\{X\in\mathbb{R}^{q\times q}: X=X^T, v^TXv\geq 0, \forall v\in \mathbb{R}_+^q\right\} Cq:={XRq×q:X=XT,vTXv0,vR+q}
q q q阶共正矩阵(Copositive Matrix)的集合;定义
C q ∗ : = { X ∈ R q × q : X = ∑ k ∈ [ K ] z k ( z k ) T f o r   s o m e   f i n i t e   { z k } k ∈ [ K ] ⊂ R + q } \mathcal{C}_q^*:=\left\{X\in\mathbb{R}^{q\times q}: X=\sum_{k\in [K]}z^k(z^k)^T \quad {\rm{for \ some \ finite\ }} \{z^k\}_{k\in[K]} \subset \mathbb{R}^q_+ \right\} Cq:= XRq×q:X=k[K]zk(zk)Tfor some finite {zk}k[K]R+q
q q q阶全正(Completely positive Matrix)的集合。不难发现, C q \mathcal{C}_q Cq C q ∗ \mathcal{C}_q^* Cq都是锥。同时,可以证明 C q \mathcal{C}_q Cq C q ∗ \mathcal{C}_q^* Cq互为对偶锥 (Burer, 2008)。 C q \mathcal{C}_q Cq C q ∗ \mathcal{C}_q^* Cq的对偶性正是CP问题的根本所在。

2.1 引入:一维空间

考虑一维优化问题
v ∗ : = min ⁡   H 11 x 1 2 + 2 g 1 x 1 s.t. − 1 ≤ x 1 ≤ 1 \begin{gathered} v^* := &\min \ H_{11} x_1^2 + 2g_1 x_1 \\ &\text{s.t.} \quad -1 \leq x_1 \leq 1 \end{gathered} v:=min H11x12+2g1x1s.t.1x11
为了解决这个问题,可以使用标准的微积分方法,分析在 ( − 1 , 1 ) (-1, 1) (1,1)区间内的关键点处的二次目标函数 H 11 x 1 2 + 2 g 1 x 1 H_{11}x_1^2 + 2g_1x_1 H11x12+2g1x1,以及端点 − 1 -1 1 1 1 1 处的值。然而,在这里我们寻求一个等价的凸优化问题。令 F : = { x 1 : − 1 ≤ x ≤ 1 } \mathcal{F}:=\{x_1:-1\leq x\leq 1\} F:={x1:1x1},这个问题可以被等价地转化成
v ∗ = min ⁡ H 11 X 11 + 2 g 1 x 1 s.t.  x 1 ∈ F , X 11 = x 1 2 \begin{gathered} v^* = &\min & H_{11} X_{11} + 2 g_1 x_1 \\ &\text{s.t. } & x_1 \in F, \quad X_{11} = x_1^2 \end{gathered} v=mins.t. H11X11+2g1x1x1F,X11=x12
在这个基础上,我们可以再来做一步松弛,得到一个更简洁的约束条件
v ∗ = min ⁡ H 11 X 11 + 2 g 1 x 1 s.t.  x 1 2 ≤ X 11 ≤ 1 \begin{gathered} v^* = &\min & H_{11} X_{11} + 2 g_1 x_1 \\ &\text{s.t. } & x_1^2\leq X_{11} \leq 1 \end{gathered} v=mins.t. H11X11+2g1x1x12X111
这个松弛的几何意义如下图所示,简单来说,我们将 ( x 1 , X 11 ) (x_1,X_{11}) (x1,X11)从左图的 x 1 ∈ F x_1\in \mathcal{F} x1F x 1 2 = X 11 x_1^2=X_{11} x12=X11放松到了一个convex hull上。如此一来, x 1 x_1 x1 X 11 X_{11} X11可以被视为两个变量来处理,目标函数变成线性,同时,很容易验证这个松弛保持了最优值的不变。同时,我们还注意到,虽然右图中的最优值对应的 ( x 1 , X 11 ) (x_1,X_{11}) (x1,X11)不一定唯一,但是所有的最优值都属于一个convex hull。这些性质会延续到后面的推广中。

2.2 拓展到二维和三维空间

下面我们考虑以下的二维问题
v ∗ = min ⁡ ⟨ H , X ⟩ + 2 ⟨ g , x ⟩ s.t.  A x ≤ b ,   X = x x T ,   x ∈ R 2 \begin{gathered} v^* = &\min & \langle H,X \rangle + 2\langle g,x \rangle \\ &\text{s.t. } & Ax \leq b,\ X=xx^T,\ x\in \mathbb{R}^2 \end{gathered} v=mins.t. H,X+2g,xAxb, X=xxT, xR2
这里, ⟨ P , Q ⟩ = t r a c e ( Q P ) = ∑ i ∈ [ n ] ∑ j ∈ [ n ] p i j q i j \langle P, Q \rangle = {\rm{trace}}(QP)=\sum_{i\in[n]}\sum_{j\in[n]}p_{ij}q_{ij} P,Q=trace(QP)=i[n]j[n]pijqij。我们还要求 A ∈ R 3 × 2 A\in\mathbb{R}^{3 \times 2} AR3×2 b ∈ R 3 b\in \mathbb{R}^3 bR3,这使得这个问题的可行域是一个三角形(不失一般性,我们假设可行域非空)。我们记 G 0 : = { ( x , x x T ) : x ∈ F } \mathcal{G}_0:=\{(x,xx^T):x \in \mathcal{F} \} G0:={(x,xxT):xF},其中 F \mathcal{F} F x x x的可行域。类似一维的情况,我们希望能将 G 0 \mathcal{G}_0 G0做松弛,同时解除 X = x x T X=xx^T X=xxT的约束,将该问题的目标函数变成线性的。一个自然的做法是,将 G 0 \mathcal{G}_0 G0松弛为 G : = c o n v ‾ { ( x , x x T ) : x ∈ F } \mathcal{G}:= \overline{\rm{conv}}\{(x,xx^T):x \in \mathcal{F} \} G:=conv{(x,xxT):xF}

做松弛之后,我们发现,在 d i m ( A ) ≤ 3 {\rm{dim}}(A)\leq3 dim(A)3的时候,我们可以证明, G \mathcal{G} G可以被等价地转换成以下的形式( P ⪰ 0 P \succeq 0 P0表示矩阵 P P P是正半定的):
G = { ( x , X ) : Y ⪰ 0 , C Y C T ≥ 0 } , w h e r e   Y = ( 1 x T x X ) ,   C = ( b , − A ) . \mathcal{G}=\left\{ (x,X): Y \succeq 0, CYC^T \geq 0 \right\}, {\rm where \ } Y = \begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix}, \ C = (b, -A). G={(x,X):Y0,CYCT0},where Y=(1xxTX), C=(b,A).
因此,原问题也就被松弛为:
v ∗ = min ⁡ ⟨ H , X ⟩ + 2 ⟨ g , x ⟩ s.t. b b T − A x b T − b x T A T + A X A T ≥ 0 ( 1 x T x X ) ⪰ 0. \begin{array}{lll} v^* = &\min & \langle H,X \rangle + 2\langle g,x \rangle \\ &\text{s.t.} &bb^T-Axb^T-bx^TA^T+AXA^T \geq 0 \\ &&\begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix} \succeq 0. \end{array} v=mins.t.H,X+2g,xbbTAxbTbxTAT+AXAT0(1xxTX)0.
我们还关心这个松弛是不是紧的,即松弛后的最优值是否和原问题的最优值相等。事实上,这个松弛实际上符合正半定规划(Semidefinite Programming,SDP)的形式,而SDP正是CP问题的一个特例,因此这个松弛的强对偶性质可以由SDP的相关方法得到。

同时,由于 d i m ( A ) ≤ 3 {\rm{dim}}(A)\leq3 dim(A)3时,上面的转换都成立,所以以上方法可以自然地推广到三维空间。

2.3 拓展到更高维度的空间&0-1变量

我们继续考虑更高维度的空间,由于取消了维度限制,我们可以通过引入松弛变量的方式把不等式约束转换成等式约束,并允许部分变量为0-1变量。因此我们讨论以下的mixed binary nonconvex quadratic program问题:
v ∗ = min ⁡ ⟨ H , X ⟩ + 2 ⟨ g , x ⟩ s.t.  a i T x = b i , ∀ i ∈ [ m ] X = x x T { x j ∈ { 0 , 1 } , ∀ j ∈ B x j ≥ 0 , ∀ j ∈ [ n ] \ B \begin{array}{lllll} v^* = &\min & \langle H,X \rangle + 2\langle g,x \rangle \\ &\text{s.t. } & a_i^T x = b_i, \quad \forall i \in [m] \\ && X = x x^T\\ && \left\{ \begin{array}{lll} x_j \in \{0,1\}, &\forall j \in B \\ x_j \geq 0, &\forall j \in [n] \backslash B \end{array} \right. \end{array} v=mins.t. H,X+2g,xaiTx=bi,i[m]X=xxT{xj{0,1},xj0,jBj[n]\B
类似低维的情况,我们也可以为这个问题找到一个松弛,即
v ∗ = min ⁡ ⟨ H , X ⟩ + 2 ⟨ g , x ⟩ s.t.  a i T x = b i , ∀ i ∈ [ m ] a i T X a i = b i 2 ∀ i ∈ [ m ] x j = X j j , ∀ j ∈ B ( 1 x T x X ) ∈ C 1 + n ∗ \begin{array}{lllll} v^* = &\min & \langle H,X \rangle + 2\langle g,x \rangle \\ &\text{s.t. } & a_i^T x = b_i, \quad \forall i\in[m] \\ && a_i^T X a_i = b_i^2 \quad \forall i\in[m] \\ && x_j = X_{jj}, \quad \forall j \in B\\ && \begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix} \in \mathcal{C}_{1+n}^* \end{array} v=mins.t. H,X+2g,xaiTx=bi,i[m]aiTXai=bi2i[m]xj=Xjj,jB(1xxTX)C1+n
相比于更低维度的问题,我们同样解除了二次约束 X = x x T X=xx^T X=xxT,将原问题转化成一个有线性目标函数且带completely positive约束的凸问题。关于强对偶性质,我们可以证明,两个问题的最优解是相同的。同时,如果 ( x ∗ , X ∗ ) (x^*,X^*) (x,X)是原问题的一个最优解,则 x ∗ x^* x一定在松弛问题的最优解集的convex hull里。由于篇幅限制,具体的证明过程无法在此处展开,读者可以参考。

2.4 讨论:以上的问题为什么叫copositive programming

到目前为止,我们似乎都没有用到 C q \mathcal{C}_q Cq这个所谓的copositive matrices集合,那么为什么以上这套转换方法被称为copositive programming呢?其实,上述quadratic programming问题是copositive programming的一个特例。首先,copositive programming的标准形式是:
v ∗ = min ⁡ ⟨ H , X ⟩ s.t. ⟨ A i , X ⟩ = c i , ∀ i ∈ [ m ] X ∈ C q . \begin{array}{lllll} v^* = &\min & \langle H,X \rangle \\ &\text{s.t.} & \langle A_i, X \rangle = c_i, \quad \forall i \in [m] \\ && X\in \mathcal{C}_q. \end{array} v=mins.t.H,XAi,X=ci,i[m]XCq.
对于(2.6)中的问题(先不考虑0-1约束),我们令 A i = a i a i T A_i = a_i a_i^T Ai=aiaiT c i = b i 2 c_i = b_i^2 ci=bi2,同时做适当变换消除目标函数中的一次项,即可得到
v ∗ = min ⁡ ⟨ H , X ⟩ s.t. ⟨ A i , X ⟩ = c i , ∀ i ∈ [ m ] X = x x T \begin{array}{lllll} v^* = &\min & \langle H,X \rangle\\ &\text{s.t.} & \langle A_i, X \rangle = c_i, \quad \forall i \in [m] \\ && X = xx^T \end{array} v=mins.t.H,XAi,X=ci,i[m]X=xxT
注意到 X = x x T X = xx^T X=xxT等价于 X ⪰ 0 X\succeq 0 X0 Rank ( X ) = 1 \text{Rank}(X)=1 Rank(X)=1,因此(2.9)可以松弛为
v ∗ = min ⁡ ⟨ H , X ⟩ s.t. ⟨ A i , X ⟩ = c i , ∀ i ∈ [ m ] X ⪰ 0 \begin{array}{lllll} v^* = &\min & \langle H,X \rangle\\ &\text{s.t.} & \langle A_i, X \rangle = c_i, \quad \forall i \in [m] \\ && X \succeq 0 \end{array} v=mins.t.H,XAi,X=ci,i[m]X0
同时,由于positive semidefinite matrices是copositive matrices的子集,因此(2.10)可以松弛成(2.8)的copositive programming标准形式。进一步,(2.8)可以通过Lagrangian松弛变为如下的对偶问题。
v ∗ ∗ = max ⁡ ∑ i = 1 m c i y i s.t. H − ∑ i = 1 m y i A i = S S ∈ C q ∗ \begin{array}{lllll} v^{**} = &\max &\sum_{i=1}^{m} c_i y_i \\ &\text{s.t.} & H-\sum_{i=1}^{m} y_i A_i = S \\ && S\in \mathcal{C}_q^* \end{array} v∗∗=maxs.t.i=1mciyiHi=1myiAi=SSCq
我们发现,如果把(2.8)和(2.11)中的 X ∈ C q X\in \mathcal{C}_q XCq S ∈ C q ∗ S\in \mathcal{C}_q^* SCq更改为 X ⪰ 0 X\succeq0 X0 S ⪰ 0 S\succeq0 S0,则copositive programming变为标准的semidefinite programming。这进一步说明了为什么CP问题是SDP问题的一个拓展。

3. 共正规划求解二次非凸优化问题方法的应用

我们以On the Design of Sparse but Efficient Structures in Operations这篇文章为例,简单介绍一下共正规划的实际应用的可能性。事实上,验证一个问题可以被建模为共正规划问题,或者换言之,验证一个矩阵是copositive matrix,本身已经是一个NP-hard的问题。因此,应用共正规划方法求解问题,其核心在于:如何通过问题本身的特性,证明某一类实际问题可以等价于(或者至少对偶于)一个共正规划问题。

这篇文章研究了以下的问题

在某些运营管理系统下,需要设计网络结构以应对随机需求。例如:a) 制造业中,工厂需要生产多种产品,但每条产线能生产的产品种类是有限的,工厂需要合理安排每条产线可生产的产品种类,以优化成本;b) 供应链管理中,每个供应商能覆盖的地区范围是有限的,需要优化最少的供应商网络,仍然保证能满足整个市场的需求。

在这类问题中,我们考虑两种极端情况下的网络:a)全连接网络,所有可能的连接都存在,能满足任何需求或任务,但这种网络同时却成本高昂、复杂度高;b)刚性网络,采用结构简单的网络,使用最少的连接以满足需求,但同时却又有适应性差的问题,一旦需求波动,效率会急剧下降。经验告诉我们,在很多实际应用中,删除 80% 以上的连接,仍然可以保持 95% 以上的系统性能。因此,我们需要寻找“稀疏但高效(Sparse but Efficient)”的网络,在平衡成本的同时,保证系统的鲁棒性。

这类问题可以被建模成以下的数学模型:
Z ( d ~ ) = min ⁡ x i j ∑ ( i , j ) ∈ G ( V , A ) c i j x i j s.t. ∑ i ∈ V 0 ∪ { s } , ( i , j ) ∈ A x i j ≥ d ~ j , j ∈ V 0 , ∑ i ∈ V 0 ∪ { s } , ( i , j ) ∈ A x i j − ∑ i ∈ V 0 ∪ { t } ( j , i ) ∈ A x j i = 0 , j ∈ V 0 , x i j ≥ 0. \begin{array}{llll} Z(\tilde{d}) = & \min_{x_{ij}} &\sum_{(i,j) \in \mathcal{G}(\mathcal{V}, \mathcal{A})} c_{ij}x_{ij} \\ &\text{s.t.} \quad & \sum_{i \in \mathcal{V}_0 \cup \{s\}, (i,j) \in \mathcal{A}} x_{ij} \geq \tilde{d}_j, \quad j \in \mathcal{V}_0, \\ && \sum_{i \in \mathcal{V}_0 \cup \{s\}, (i,j) \in \mathcal{A}} x_{ij} - \sum_{i \in \mathcal{V}_0 \cup \{t\}(j,i) \in \mathcal{A}} x_{ji} = 0, \quad j \in \mathcal{V}_0, \\ && x_{ij} \geq 0. \end{array} Z(d~)=minxijs.t.(i,j)G(V,A)cijxijiV0{s},(i,j)Axijd~j,jV0,iV0{s},(i,j)AxijiV0{t}(j,i)Axji=0,jV0,xij0.
其中, G ( V , A ) \mathcal{G}(\mathcal{V}, \mathcal{A}) G(V,A)是某种网络结构,其中 s s s是source node, t t t是sink node,所有的流量均通过网络 G \mathcal{G} G s s s流到 t t t d ~ \tilde{d} d~是有随机性的需求,并假设已知 d ~ \tilde{d} d~的一阶矩和二阶矩。 Z ( d ~ ) Z(\tilde{d}) Z(d~)是在给定网络结构 G \mathcal{G} G和需求 d ~ \tilde{d} d~的前提下,能满足需求 d ~ \tilde{d} d~的最小成本。问题的目标是求解分布鲁棒优化问题
Z P = sup ⁡ d ~ ∼ ( μ d , Σ d ) E [ Z ( d ~ ) ] . Z_P = \sup_{\tilde{\mathbf{d}} \sim (\mu_d, \Sigma_d)} \mathbb{E}[Z(\tilde{\mathbf{d}})]. ZP=d~(μd,Σd)supE[Z(d~)].
下面我们主要展示本文如何将 Z P Z_P ZP利用CP技巧进行转化的。我们首先找到 ( 3.1 ) (3.1) (3.1)的对偶:
Z ( d ~ ) = max ⁡ ( y , z ) ∈ X ∑ j ∈ V 0 d ~ j y j Z(\tilde{\mathbf{d}}) = \max_{(y,z) \in \mathcal{X}} \sum_{j \in \mathcal{V}_0} \tilde{d}_j y_j Z(d~)=(y,z)XmaxjV0d~jyj
其中
X = { ( y z ) | y j + z j + s j = c s j , j ∈ V 0 ( 1 − c i j ) ( y j + z j ) ( 1 − z i ) = 0 , ( i , j ) ∈ A 0 y , z , s ∈ { 0 , 1 } n } \mathcal{X} = \left\{ \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix} \middle| \begin{aligned} & y_j + z_j + s_j = c_{sj}, \quad j \in \mathcal{V}_0 \\ & (1 - c_{ij})(y_j + z_j)(1 - z_i) = 0, \quad (i,j) \in \mathcal{A}_0 \\ & \mathbf{y}, \mathbf{z}, \mathbf{s} \in \{0,1\}^n \end{aligned} \right\} X= (yz) yj+zj+sj=csj,jV0(1cij)(yj+zj)(1zi)=0,(i,j)A0y,z,s{0,1}n
难点在于 Z P Z_P ZP d ~ \tilde{d} d~相关,而 d ~ \tilde{d} d~是一个随机变量,如何将其转化成确定性优化的形式呢?作者证明,这个问题可以做如下的转换。首先,我们令 x = ( y   z ) T \mathbf{x}=(\mathbf{y}\ \mathbf{z})^T x=(y z)T作为新的问题变量,原问题 ( 3.3 ) (3.3) (3.3)可以重新表述为:
Z ( d ~ ) = max ⁡ x d ~ ⊤ x s.t. a i ⊤ x = b i , ∀ i , ( h i ⊤ x + f i ) ( h ^ j ⊤ x + f ^ j ) = 0 , ∀ ( i , j ) ∈ H , x i ∈ { 0 , 1 } , ∀ i ∈ B . \begin{array}{lll} Z(\tilde{\mathbf{d}}) = &\max_{\mathbf{x}} &\tilde{\mathbf{d}}^\top \mathbf{x} \\ &\text{s.t.} &a_i^\top \mathbf{x} = b_i, \quad \forall i, \\ &&(h_i^\top \mathbf{x} + f_i)(\hat{h}_j^\top \mathbf{x} + \hat{f}_j) = 0, \quad \forall (i, j) \in \mathscr{H}, \\ &&x_i \in \{0,1\}, \quad \forall i \in \mathscr{B}. \end{array} Z(d~)=maxxs.t.d~xaix=bi,i,(hix+fi)(h^jx+f^j)=0,(i,j)H,xi{0,1},iB.
由于我们只知道 d ~ \tilde{d} d~的一阶矩和二阶矩信息,因此我们定义以下的变量:
a)期望变量 p : = E [ x ( d ~ ) ] ∈ R + N \mathbf{p} := \mathbb{E}[\mathbf{x}(\tilde{\mathbf{d}})] \in \mathbb{R}_+^N p:=E[x(d~)]R+N
b)二阶矩阵 Y : = E [ x ( d ~ ) d ~ ⊤ ] ∈ R + N × N \mathbf{Y} := \mathbb{E}[\mathbf{x}(\tilde{\mathbf{d}})\tilde{\mathbf{d}}^\top] \in \mathbb{R}_+^{N \times N} Y:=E[x(d~)d~]R+N×N
c)协同矩阵 X : = E [ x ( d ~ ) x ( d ~ ) ⊤ ] ∈ R + N × N \mathbf{X} := \mathbb{E}[\mathbf{x}(\tilde{\mathbf{d}})\mathbf{x}(\tilde{\mathbf{d}})^\top] \in \mathbb{R}_+^{N \times N} X:=E[x(d~)x(d~)]R+N×N。同时,我们还可以注意到:
E [ ( 1 d ~ x ( d ~ ) ) ( 1 d ~ x ( d ~ ) ) ⊤ ] = ( 1 μ d ⊤ p ⊤ μ d Σ d Y ⊤ p Y X ) \mathbb{E}\left[ \begin{pmatrix} 1 \\ \tilde{\mathbf{d}} \\ \mathbf{x}(\tilde{\mathbf{d}}) \end{pmatrix} \begin{pmatrix} 1 \\ \tilde{\mathbf{d}} \\ \mathbf{x}(\tilde{\mathbf{d}}) \end{pmatrix}^\top \right] = \begin{pmatrix} 1 & \mu_d^\top & \mathbf{p}^\top \\ \mu_d & \Sigma_d & \mathbf{Y}^\top \\ \mathbf{p} & \mathbf{Y} & \mathbf{X} \end{pmatrix} E 1d~x(d~) 1d~x(d~) = 1μdpμdΣdYpYX
根据定义,这个矩阵显然是completely positive的,且完整包含了 d ~ \tilde{d} d~的分布信息。利用以上定义的变量,可以将问题 ( 3.4 ) (3.4) (3.4)利用2.3节中介绍的方法写成下面的Completely positive programming问题。
Z C = max ⁡ I ⋅ Y s.t. a i ⊤ p = b i , ∀ i = 1 , … , M ; a i ⊤ X a i = b i 2 , ∀ i = 1 , … , M ; X i i = p i , ∀ i ∈ B ; h i ⊤ X h ^ j + ( f i h ^ j ⊤ + f ^ j h i ⊤ ) p + f i f ^ j = 0 , ( i , j ) ∈ H ; C P = ( 1 μ ⊤ p ⊤ μ Σ Y ⊤ p Y X ) ∈ C 2 N + 1 ∗ ; μ = μ d ; Σ = Σ d . \begin{array}{lllll} Z_C = & \max &I \cdot \mathbf{Y} \\ &\text{s.t.} & \mathbf{a}_i^\top \mathbf{p} = b_i, \quad \forall i = 1, \ldots, M; \\ && \mathbf{a}_i^\top X \mathbf{a}_i = b_i^2, \quad \forall i = 1, \ldots, M; \\ && X_{ii} = p_i, \quad \forall i \in \mathcal{B}; \\ && \mathbf{h}_i^\top X \hat{\mathbf{h}}_j + (f_i \hat{\mathbf{h}}_j^\top + \hat{f}_j \mathbf{h}_i^\top) \mathbf{p} + f_i \hat{f}_j = 0, \quad (i, j) \in \mathcal{H}; \\ && CP = \begin{pmatrix} 1 & \mu^\top & \mathbf{p}^\top \\\mu & \Sigma & \mathbf{Y}^\top \\\mathbf{p} & \mathbf{Y} & X \end{pmatrix} \in \mathcal{C}_{2N+1}^*; \\ && \mu = \mu_d; \\ &&\Sigma = \Sigma_d. \end{array} ZC=maxs.t.IYaip=bi,i=1,,M;aiXai=bi2,i=1,,M;Xii=pi,iB;hiXh^j+(fih^j+f^jhi)p+fif^j=0,(i,j)H;CP= 1μpμΣYpYX C2N+1;μ=μd;Σ=Σd.

4. 小结

共正优化(Copositive Programming, CPP)是一类强大但计算复杂的凸优化问题,在组合优化、博弈论和机器学习等领域具有广泛应用。其核心思想是利用共正矩阵锥(Copositive Cone)来刻画约束,使得许多难解的非凸问题能够转化为凸优化问题求解。同时,我们可以将共正优化问题的对偶形式转化为完全正优化(Completely Positive Programming, CPP),其中决策变量属于完全正矩阵锥(Completely Positive Cone)。这种对偶关系为求解共正优化问题提供了新的思路,同时也揭示了共正锥与完全正锥之间的数学联系。

虽然共正优化在理论上提供了强大的建模能力,但由于共正锥的描述涉及所有非负向量,计算复杂度较高,因此在实际研究中不如半定规划深入。我们同样期待着共正优化在更多实际问题中的应用。

5. 参考文献

Burer, S. (2008). On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming, 120(2), 479-495. doi:10.1007/s10107-008-0223-z

Dür, M. (2010). Copositive programming–a survey. Recent Advances in Optimization and its Applications in Engineering: The 14th Belgian-French-German Conference on Optimization (pp. 3-20). Berlin, Heidelberg: Springer Berlin Heidelberg.

Burer, S. (2015). A gentle, geometric introduction to copositive optimization. Mathematical Programming, 151(1), 89-116. doi:10.1007/s10107-015-0888-z

Yan, Z., Gao, S. Y., & Teo, C. P. (2018). On the Design of Sparse but Efficient Structures in Operations. Management Science, 64(7), 3421-3445. doi:10.1287/mnsc.2017.2761

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值