Threshold Effects in Online Group Buying
Reference: Jiahua Wu, Mengze Shi, Ming Hu (2015) Threshold Effects in Online Group Buying. Management Science 61(9):2025-2040.
原文链接:https://doi.org/10.1287/mnsc.2014.2015
Problem
在线团购行业自2008年Groupon推出后迅速增长。团购网站协调一群有兴趣的买家实现共同购买(按团购折扣价格),但折扣只有在承诺购买的总人数超过预设的交易阈值时才有效。这种机制旨在降低供应商的风险,同时激励消费者积极参与。
那么,当团购交易的累计签约人数接近或达到预设的阈值时,消费者的行为是否会发生显著变化?例如,是否会出现新签约人数的激增(如下图所示)?阈值的设置是否真的能有效刺激消费者行为,尤其是在阈值即将达到的关键时刻?
Method
研究使用了Groupon在86个城市的团购数据,涵盖了71天内的4208笔交易。这些数据记录了团购交易的特征(如交易价格、折扣水平、阈值等)以及实时更新的签约人数。具体变量设置如下:
- 因变量:每5分钟时间间隔内的新签约人数。
- 自变量:包括时间虚拟变量、滞后累计签约人数等。
- 控制变量:为了控制其他可能影响签约行为的因素,研究中还引入了交易固定效应(deal fixed effects)和一天中的时间效应(time-of-the-day fixed effects)。
基础模型如下所示:通过时间虚拟变量捕捉阈值达到时的签约模式,验证阈值达到时是否出现新签约人数的激增。
随后使用广义最小二乘法、广义矩估计用于估计模型,并进行异质性分析(分析阈值效应在不同产品类别中的差异)和统计检验(Wald检验,F检验)。
Main Result
1、当团购交易的累计签约人数接近或达到预设的阈值时,新签约人数显著增加。这种现象在所有产品类别和市场中都普遍存在。
这种现象可能与消费者的心理因素有关,例如消费者在接近目标时的“达成目标的兴奋感”(类似于拍卖中的“竞标狂热”),或者消费者推迟决策直到接近阈值时才做出决定。
2、在阈值达到之前,新签约人数与累计签约人数的正相关性更强,而在阈值达到之后,这种关系显著减弱。
这种现象可能与消费者的行为模式有关,例如消费者在阈值达到前更倾向于通过口碑传播来吸引他人参与,或者消费者在阈值达到前更依赖于他人的决策来做出自己的决策(即“羊群效应”或“观察学习”)。
3、产品类别差异:
- 实物、食品:阈值效应最为显著,表明消费者对这类产品的兴趣在接近阈值时显著增加。
- 其他类别:如美容、健身等服务类别的阈值效应相对较弱。
4、市场差异:
- 大城市:阈值效应更为显著,表明这些地区的消费者对阈值的敏感性更高。
- 中小城市:阈值效应相对较弱,表明市场规模和地理位置对阈值效应有显著影响。
Why recommend
1、通过实证研究,系统地探讨了在线团购中阈值对消费者签约行为的影响,填补了该领域在实证研究方面的空白。以往的研究多集中在理论模型和机制设计上,而本文通过大规模数据实证分析,提供了关于阈值效应的直接证据。
2、通过分析阈值效应,进一步探讨了消费者在群体购买中的行为模式,如“达成目标的兴奋感”、推迟决策行为、信息传播等。这些发现有助于深化对消费者群体行为和心理机制的理解,并为团购平台和供应商提供了重要的决策依据。
Consumer Equilibrium, Demand Effects, and Efficiency in Group Buying
Reference: Ming, Liu & Tunca, Tunay. (2022). Consumer Equilibrium, Demand Effects, and Efficiency in Group Buying. Manufacturing & Service Operations Management. 24. 10.1287/msom.2022.1083.
原文链接:https://pubsonline.informs.org/doi/10.1287/msom.2022.1083
Problem
作者研究了团购活动中的消费者均衡、需求效应和效率问题。团购作为一种创新的定价机制,通过设置消费者成团数量的阈值来降低商品单价,从而吸引消费者参与。团购通道通常会在商品/服务开售前某个时间窗内开启,消费者需要在此期间发起拼团(sign up),当时间窗关闭时,若拼团人数达到了平台事先设定的阈值,则团内消费者均可以折扣价购买,反之则只能以原价(base unit price)购买。尽管已有研究探讨了团购机制的某些方面,但大多数研究集中在静态均衡或理论分析上,缺乏对动态消费者行为的深入研究。此外,现有研究对于团购机制在实际应用中的利润效应存在分歧,部分研究认为团购可能无法为零售商带来显著的利润增长。基于此,该研究的核心问题为:
- 消费者均衡的动态演变:在团购活动中,消费者何时决定拼团购买,以及拼团行为如何随着活动的进行而动态变化?
- 团购对需求的实际影响:团购机制是否能够真正增加消费者需求?其效果如何量化?
- 团购机制的利润效率:团购是否为零售商带来利润增长?如果可以,如何通过优化团购机制进一步提升利润?
研究使用了淘宝团购数据,结合淘宝的团购机制(考虑双阈值结构、固定折扣和非退还拼团押金)构建了一个连续时间动态博弈理论模型,用以研究团购活动中的消费者行为。零售商在平台上举办团购活动,活动时间为连续时间窗口 [ 0 , T ] [0,T] [0,T]。消费者在此期间陆续到达,按照泊松过程(Poisson process)出现。活动设有两个团购阈值 M 1 M_1 M1和 M 2 M_2 M2,以及对应的两个团购价格 p 1 p_1 p1和 p 2 p_2 p2(其中 p 0 ≥ p 1 ≥ p 2 ≥ d p_0≥p_1≥p_2≥d p0≥p1≥p2≥d, p 0 p_0 p0为无团购时的原价, d d d为拼团押金)。如果签到人数 N N N小于 M 1 M_1 M1,则无团购优惠,价格为 p 0 p_0 p0;如果 M 1 ≤ N < M 2 M_1≤N<M_2 M1≤N<M2,则触发第一档团购价格 p 1 p_1 p1;如果 N ≥ M 2 N≥M_2 N≥M2,则触发第二档团购价格 p 2 p_2 p2。消费者到达时观察到当前签到人数,根据对后续团购成功的预期和自身对商品的估值 u u u,决定是否参与拼团。发起拼团需支付不可退还的押金 d d d。活动结束后,消费者根据最终价格决定是否购买,若不购买则损失押金。动态过程如下图所示:
Method
研究给出了第一档/第二档拼团成功概率的动态递归方程,分别对应团购阈值
M
1
M_1
M1和
M
2
M_2
M2,用于描述团购成功概率随时间和签到人数变化:
π
k
1
(
t
)
=
∫
0
T
−
t
[
H
k
(
t
+
x
)
π
k
+
1
1
(
t
+
x
)
+
(
1
−
H
k
(
t
+
x
)
)
π
k
1
(
t
+
x
)
]
λ
g
(
w
)
e
−
λ
g
(
w
)
x
d
x
\pi^1_k(t) = \int_{0}^{T-t} \left[ H_k(t+x) \pi^1_{k+1}(t+x) + (1 - H_k(t+x)) \pi^1_k(t+x) \right] \lambda_g(w) e^{-\lambda_g(w)x} dx
πk1(t)=∫0T−t[Hk(t+x)πk+11(t+x)+(1−Hk(t+x))πk1(t+x)]λg(w)e−λg(w)xdx
π
k
2
(
t
)
=
∫
0
T
−
t
[
H
k
(
t
+
x
)
π
k
+
1
2
(
t
+
x
)
+
(
1
−
H
k
(
t
+
x
)
)
π
k
2
(
t
+
x
)
]
λ
g
(
w
)
e
−
λ
g
(
w
)
x
d
x
\pi^2_k(t) = \int_{0}^{T-t} \left[ H_k(t+x) \pi^2_{k+1}(t+x) + (1 - H_k(t+x)) \pi^2_k(t+x) \right] \lambda_g(w) e^{-\lambda_g(w)x} dx
πk2(t)=∫0T−t[Hk(t+x)πk+12(t+x)+(1−Hk(t+x))πk2(t+x)]λg(w)e−λg(w)xdx
其中,
H
k
(
t
)
H_k(t)
Hk(t)是消费者在时间
t
t
t参与拼团的概率,
λ
g
(
w
)
\lambda_g(w)
λg(w)是考虑团购激励后的消费者到达率,
w
w
w是影响消费者到达率的参数向量,
T
T
T是团购活动的总时长,
k
k
k是当前签到人数。同时,文章给出了该方程的三个边界条件:
条件 i i i表示如果签到人数未达到团购阈值,团购将不会成功;条件 i i ii ii表示如果发起拼团人数已达到第一档团购阈值但未达到第二档团购阈值,那么团购成功的概率将全部作用于第一档团购,即在团购人数较少的情况下,消费者只能以较低的价格购买;条件 i i i iii iii则表示表示如果签到人数已达到或超过第二档团购阈值,那么第二档团购将必然成功。
而对于在时间
t
t
t到达且观察到已有
k
k
k人发起拼团的消费者,其签到概率
H
k
(
t
)
H_k(t)
Hk(t)取决于其团购预期收益估值(reservation utility)
u
u
u是否高于某个阈值
u
ˉ
k
,
t
\bar{u}_{k,t}
uˉk,t。该阈值由当前时间、已发起拼团人数以及团购价格结构共同决定,研究给出了具体表达式:
u
ˉ
k
,
t
=
{
p
0
−
2
δ
−
d
(
1
−
1
π
k
+
1
2
(
t
)
)
,
if
0
≤
d
≤
δ
π
k
+
1
2
(
t
)
,
p
0
−
d
+
d
−
δ
(
π
k
+
1
1
(
t
)
+
2
π
k
+
1
2
(
t
)
)
,
if
δ
π
k
+
1
2
(
t
)
<
d
≤
δ
π
k
+
1
1
(
t
)
+
2
δ
π
k
+
1
2
(
t
)
,
p
0
−
δ
(
π
k
+
1
1
(
t
)
+
2
π
k
+
1
2
(
t
)
)
,
if
d
>
δ
π
k
+
1
1
(
t
)
+
2
δ
π
k
+
1
2
(
t
)
.
\bar{u}_{k,t} = \begin{cases} p_0 - 2\delta - d \left(1 - \frac{1}{\pi^2_{k+1}(t)}\right), & \text{if } 0 \leq d \leq \delta \pi^2_{k+1}(t), \\ p_0 - d + d - \delta \left(\pi^1_{k+1}(t) + 2\pi^2_{k+1}(t)\right), & \text{if } \delta \pi^2_{k+1}(t) < d \leq \delta \pi^1_{k+1}(t) + 2\delta \pi^2_{k+1}(t), \\ p_0 - \delta \left(\pi^1_{k+1}(t) + 2\pi^2_{k+1}(t)\right), & \text{if } d > \delta \pi^1_{k+1}(t) + 2\delta \pi^2_{k+1}(t). \end{cases}
uˉk,t=⎩
⎨
⎧p0−2δ−d(1−πk+12(t)1),p0−d+d−δ(πk+11(t)+2πk+12(t)),p0−δ(πk+11(t)+2πk+12(t)),if 0≤d≤δπk+12(t),if δπk+12(t)<d≤δπk+11(t)+2δπk+12(t),if d>δπk+11(t)+2δπk+12(t).
为了验证理论模型的有效性并量化团购对需求和利润的影响,研究还进行了相关实证分析。通过利用2013年11月11日淘宝平台上266次团购活动数据,以及2,715次传统单一定价销售的详细信息,文章使用结构化回归方法,联合估计消费者到达率
λ
g
\lambda_g
λg和消费者效用分布函数
F
F
F及其参数。对于需求效应,两阶段广义线性模型(GLM)在第一阶段估计单一定价销售的基础到达率,在第二阶段结合团购数据估计团购对需求的提升效果。进一步地,研究根据团购活动的签到人数和最终购买人数,计算零售商的实际利润;通过估计的消费者效用分布和到达率,计算单一定价策略下的最优价格和预期利润;最终比较团购活动的实际利润与单一定价策略下的预期利润,评估团购机制的利润提升效果。
Main Result
- 理论结果:
- 理论均衡拟合:通过求解动态递归方程,研究得到了团购活动中消费者发起拼团概率和团购成功的概率。理论均衡与实际观察到的消费者行为高度契合,表明模型能够准确捕捉团购活动中的动态消费者行为。
- 消费者拼团行为:消费者在团购活动中发起拼团的行为取决于其对商品的估值以及对其他消费者拼团行为的预期。具体而言,消费者在到达时会根据当前发起拼团人数和团购价格结构决定是否拼团。拼团概率 H k ( t ) H_k(t) Hk(t)随时间和拼团人数的变化而动态调整,表现出复杂的非线性特征。
- 需求效应:实证结果显示,团购折扣对需求的提升作用呈现“钟形”分布——对于基础需求水平较低和较高的产品,团购折扣对需求的提升效果有限;而对于中等基础需求水平的产品,团购折扣可以显著提高需求。具体而言,团购使零售商的产品需求平均提高了16.6%,表明团购机制能够有效吸引更多的消费者参与购买。
- 利润优化:通过比较团购活动的实际利润与单一定价策略下的预期利润,研究发现团购机制能够显著提升零售商的利润。
- 利润提升:团购活动使零售商的利润平均提高了 11.1%。这表明即使在提供团购折扣的情况下,通过增加消费者数量和需求,零售商仍然能够实现利润增长。
- 优化潜力:进一步分析表明,通过优化团购价格和折扣,零售商的利润可以进一步提高超过 30%。对于中等基础需求水平的产品,设置合适的团购折扣能够最大化激励消费者进行社交传播,从而显著提升需求和利润。
- 不同产品类别的差异:在研究中,不同产品类别(如电视、空调、燃气灶等)的利润提升效果存在差异。例如,电视和空调等产品在采用优化定价策略后,利润提升效果更为显著,而冰箱和热水器等产品的提升效果相对较小。这表明团购机制的利润提升效果与产品的基础需求水平和消费者行为密切相关。
Why recommend
- 文章不仅从理论上深入分析了团购活动中的动态消费者行为,还通过实证研究为零售商提供了具体的团购实施建议。
- 研究成果对于理解团购机制的运作原理、评估其对需求和利润的影响具有重要意义,同时也为零售商优化团购策略提供了指导。
Intertemporal Segmentation via Flexible-Duration Group Buying
Reference:Ming Hu , Jingchen Liu , Xin Zhai (2020) Intertemporal Segmentation via Flexible-Duration Group Buying. Manufacturing & Service Operations Management 23(5):1157-1174.
原文链接:https://pubsonline.informs.org/doi/10.1287/msom.2020.0869
Problem
在常见的线上团购(group buying)中,平台往往预设一个固定截止日期:只要在截止前累积报名人数达到门槛 N,团购就成功,否则失败。在这类模式下,团购持续时间是固定的(如“一日一团”)。然而,在一些平台(如拼多多等)以及现实商业场景里,我们看到另一种团购形式:“无固定截止日期”(或称“灵活时长”)。其规则是:只要凑满 N 人订单,就立刻生产或发货,若还没凑满就一直等待新报名者,直到达到 N。消费者决策时,会面临不确定且可能较长的等待时间;而企业也希望知道,这样一种能“随时达成”的团购如何与自身的常规产品(随时现货购买、无须等待)搭配,以获得最大利润。
当企业同时提供“常规产品”(可立即购买)与“高质量或特殊定制的团购产品”(待满足最低批量 N 才投入生产时:企业该如何设置团购价 p 与常规品价 r,来平衡不同类型顾客的需求和等待成本?何种条件下,团购让企业利润超过不提供团购的情形?消费者又会出现怎样的“分时段”加入团购,从而形成市场细分?
该论文从一个两点估值(two-segment) 市场模型切入,系统刻画了消费者到达、决策与等待过程的动态博弈机制,并给出了理性预期均衡(REE) 下的最优产品线策略及主要管理学含义。
Method
论文的数学模型与分析建立在以下关键假设与步骤之上:
2.1 消费者与市场假设
2.1.1 消费者随机到达
- 消费者按照泊松过程 λ 到达市场。
- 每位到达者是高估值型(比例 γ,估值 H)或低估值型(比例 1−γ,估值 L)。
2.1.2 产品及价格
- 常规产品:质量水平记为 1,价格为 r。随时有库存可买,无需等待。
- 团购产品:质量水平记为 θ,其中论文主要关注 θ>1(可理解为“更高端”或“带有特色附加值”),价格为 p。但该产品只有在累积人数满 N后才投入生产并交付。
2.1.3 等待成本
- 如果某个消费者决定参加团购,但要等到人数凑满 N 才能收到产品。等待时间越长,消费者效用损失越大。设单位时间等待成本为 c>0。
2.2 模型核心:团购状态与理性预期
为刻画团购的动态过程,论文定义了一个“pledge-to-go”的状态变量 n,表示该次团购还需要多少人报名才达成门槛 N。当 n=0 时,团购正式成功并交付。消费者若在状态 n时抵达,需根据预期的剩余等待时间来判断是否参加团购。
2.2.1 状态转移与等待时间
若当前状态为 n,后续有新消费者以速率 λ 到达,并做决策:要么报名团购(使得状态变为 n−1),要么买常规品或退出。论文用 w(n)表示在状态 n下,下一位报名消费者所需的期望等待时间(从报名到生产出货)。通过泊松过程的无记忆性和理性预期均衡思路,可以求得递推式:
2.2.2 消费者效用
对于高估值消费者(估值 H):在状态 n 时决定参加团购,由于该消费者需要等到凑满 NNN 人后才实际拿到团购产品,所以要承担等待带来的效用损失。其“总收益”可理解为:产品本身带来的“溢价价值”(与 H 相关)减去团购价格 再减去 “等待成本”(等候时间长度乘以单位等待成本)。也就是说,随着 n 值越大(即还差很多人达成门槛),预期等候越长、效用越低。随着 n 减小,等待时间相应缩短、效用提升。若改为直接购买常规产品:
不存在等待的损失,因为可以立即获得;此时消费者的效用仅是自己对产品价值 H 与常规产品价格的差值。
对于低估值消费者(估值 L):其逻辑与高估值者类似,只是将商品的“基准价值”由 H 换成 L。同样地,选择团购时,要折减所需等待造成的损失;若改买常规产品,则效用是 L 减去常规品价格,且无须等待。
2.2.3 企业利润
团购产品的盈利:团购只有在满足最低批量 N 时才开始生产,一次性交付给所有先前报名的顾客。这意味着,当团购成功后,企业能收取所有报名者支付的团购价格之和,但同时需要考虑生产或批量成本(以及其他必要花费)。
常规产品的盈利:常规品可随时购入,无需等待,只要顾客到来就能即时交易。其盈利则取决于定价高低和实际购买人次。
持有成本或库存费用 h:如果企业必须备一些高端/特制产品库存,那么在整个销售季或长期过程中会产生相应的存储、管理成本 h。这部分成本通常需要从收益里扣除。
2.2.4 个体理性(IR)与激励相容(IC)
-
要想保证分不同阶段向不同类型出售团购价而不被另一类型“挤占”,需满足:
IR: 对每一类型消费者,实际选择的选项,至少比不购买的效用高。
IC: 每一类型消费者对自己的定价-等待组合优于“假冒/切换”到另一类型面对的组合。
-
在本研究(两点估值)中,作者透过这两套约束可以推导:何时只招募高估值群体团购、何时在后期允许低估值进入、何时干脆不办团购等。
Main Result
基于上述模型,论文得到了如下主要结果和管理启示:
- 跨时段市场细分
论文在数值分析与均衡求解后发现:当团购门槛 N 不算太小,但也不至于过大时,往往出现“先只让高估值消费者报名以获得较高利润;随着状态 n 降低并更接近完成门槛,再允许低估值消费者进来补足人数、加速达成”的现象。高估值群体虽然等待更久,但因高质量商品且价格可负担,整体效用更高;低估值群体后期报名时等待较短,也能获利。
- 批量规模和估值差异的影响
若 N 太小,等待成本影响有限,此时干脆让所有人都团购(若 θ 高且市场不差)或只让高估值人群(若估值差距非常大)即可。若 N 超过某临界值,等待时间过长、补偿成本过高,企业甚至可能放弃团购只做常规销售。在适中的 N 下,才最容易出现上述“跨时段先后加入”的分段策略,实现比单纯不做团购/只做团购更优的利润与市场覆盖。
- 定价策略与信息披露
有时“后期降价”(end-of-cycle discount)比“早鸟折扣”更有效,因为当成功几乎板上钉钉时,折价可迅速吸纳低估值者凑单。若故意隐藏团购进度(不让消费者知道还缺多少人),则可以减少对“最先报名者”的额外补偿,从而提升企业总利润,尤其当 θ 高时。
Why recommend
- 研究创新性:在此前研究中,大多针对“有固定截止日”的团购;本论文则聚焦“灵活时长”并将“等待成本”纳入分析,开拓了新的角度。
- 理论与实用性:论文本身提供了清晰的利润比较、消费者剩余分析,且对不同参数进行灵敏度测试,给出在什么场景下“跨时段细分”最有价值。对现实中如拼单出行、定制旅游、限量品再版等高库存或高批量成本行业具备实用指导意义。