目录
第一题:写出高音扬声器和低音扬声器电压 v1 和 v2 对于 vs 的传递函数,
第二题:利用 AC 频率扫描分析求出两个扬声器电压的频率响应曲线,验证计
第三题:计算并利用 EWB 仿真证明从 vs 看进去的阻抗为一常数 16 欧姆。
第一题:写出高音扬声器和低音扬声器电压 v1 和 v2 对于 vs 的传递函数。
第二题:取 C=1/( 2 Rω)其中 R=16Ω,ω=1/ RC ,确定电路中电感 L。
第三题:利用 AC 频率扫描分析求出两个扬声器电压的频率响应曲线,验证计
第四题:计算并仿真证明从 vs 看进去的阻抗为一常数 16 欧姆。
(一)题目简介
1.一阶分频器电路设计
假定高音和低音扬声器均等效为 16 欧姆电阻,设计如图 2 的简单分频器电
路,要求高低频分界(两个滤波器的截止频率)为 5kHz。
1) 写出高音扬声器和低音扬声器电压对于 vs 的传递函数,确定电路中电
容 C 和电感 L 的元件值;
2)利用 AC 频率扫描分析求出两个扬声器电压的频率响应曲线,验证计算
结果。用包含高低频成分的电压 vs 激励进行测量验证。
3)计算并利用 EWB 仿真证明从 vs 看进去的阻抗为一常数 16 欧姆。

2.二阶分频器电路设计
假定高音和低音扬声器均等效为 16 欧姆电阻,设计如图 3 的二阶分频器
电路,要求高低频分界(两个滤波器的截止频率)为 5kHz。
1)写出高音扬声器和低音扬声器电压 v1 和 v2 对于 vs 的传递函数。
2)取 C=1/(
2
Rω)其中 R=16Ω,ω=1/
RC
,确定电路中电感 L。
3)利用 AC 频率扫描分析求出两个扬声器电压的频率响应曲线,验证计算
结果。用包含高低频成分的电压 vs 激励进行测量验证。
4)计算并仿真证明从 vs 看进去的阻抗为一常数 16 欧姆。
5)比较二阶分频器的特性与一阶分频器特性有什么不同?

(二)原理分析
音频信号频率成分通常在 10Hz
到
20kHz
范围内,经过功率放大后在音箱中分频,用无源 LC
元件组成的滤波器实现。如上图
1
所示,高音扬声器希望得到高于频率 fc
的信号成分,低音扬声器得到频率低于
fc
的信号成分。
因此,需要一个
“
高通
”
滤波器,其幅度频率响应如图中的红色曲线(简化了的),将输入信号 Vs
中频率高于
fc
的成分送给高音扬声器,而抑制频率低于
fc
的信号分;另一个“
低通
”
滤波器,其幅度频率响应如图中的蓝色曲线,它让低频成分通过,而不让高频成分通往低音扬声器。
无源 LC
元件阻抗都与所加信号频率有关:
·
对于电容元件而言,阻抗
Xc=-1/wC
频率越低,容抗绝对值越大,在同一电路结构下,电容分压作用越明显。因
此在一阶与二阶电路中与电容元件串联的扬声器为高音扬声器。
·
对于电感元件而言,阻抗
Xl=wL
频率越高,感抗绝对值越大,在同一电路结构下,电感分压作用越明显。因
此在一阶与二阶电路中与电感元件串联的扬声器为低音扬声器。
(三)具体思路--不包括Multisim具体仿真结果
1. 一阶分频器电路设计
第一题:写出高音扬声器和低音扬声器电压 v1 和 v2 对于 vs 的传递函数,
确定电路中电容
C
和电感
L
的元件值。
解:

∵题中所要求两个滤波器的截止频率为 5KHz
∴H1(w)=H2(w),w=2πf=2*π*5KHz
∴代入计算得
C=2uF L=0.5mH
第二题:利用 AC 频率扫描分析求出两个扬声器电压的频率响应曲线,验证计
算结果。用包含高低频成分的电压
vs
激励进行测量验证。
解:使用 Multisim 软件搭建电路如图:

由仿真数据可知:
当输入幅度为
10Vpp
,输入频率从
100Hz
升到
10kHz
时:
·对于电容支路(高音扬声器)而言
:
-
随着输入频率的升高,
V1
(黄线)的电压(电容支路)增加,
即幅度
之比随频率升高而升高
(因此电容支路上的扬声器为高音扬声器);
-
由波形可知
V1
输出超前输入电压
Vs
,即
相位为正值
;
-
频率从
100Hz
变化至
100kHz
,两者波形从
“
峰值点
-
零值点
”
对应
到波形重合,即相位差逐渐减小,即
相位从
+90
下降到
0
,与仿真结果相同。
·对于电感支路(低音扬声器)而言:
-
随着输入频率的增加,
V2
(黄线)的电压(电感支路)减小,
即幅度
值比随频率升高而减小
(因此电感支路上的扬声器为低音扬声器);
-
由波形可知
V2
输出落后输入电压
Vs
,即
相位为负值
;
-
频率从
100Hz
变化至
100kHz
,两者波形从重合到
“
峰值点
--
零值
点
”
对应,即相位差逐渐增大,即
相位从 0
下降到
-90,与仿真结果相同。
第三题:计算并利用 EWB 仿真证明从 vs 看进去的阻抗为一常数 16 欧姆。
解:

验证:
搭建电路如下:(
以下所有波形红色为输入,黄色为输出
)
要验证从
vs
看进去的阻抗为一常数
16
欧姆,需要
排除偶然性的
16Ω
电阻
性阻抗的存在
,因此选用两组不同的输入进行验证。
略仿真图
2. 二阶分频器电路设计
第一题:写出高音扬声器和低音扬声器电压 v1 和 v2 对于 vs 的传递函数。
解:

第二题:取 C=1/( 2 Rω)其中 R=16Ω,ω=1/ RC ,确定电路中电感 L。
解:
∵题目所给两个滤波器的截止频率为
5kHz
∴
H1(w)=H2(w)=1/
2
∴
w^2*LC=1
∴
4
2
*25*10
6
*
L
2
/16
2
/ 2
1
∴
C=1.4uF L=0.72mH
第三题:利用 AC 频率扫描分析求出两个扬声器电压的频率响应曲线,验证计
算结果。用包含高低频成分的电压
vs
激励进行测量验证。
解:搭建电路如下:

由仿真数据可知:
当输入幅度为
10Vpp
,输入频率从
100Hz
到
10kHz
时:
·对高音扬声器:
-
随着频率的升高,
V1
(黄线)的电压增加,
即幅度比随频率升高而
升高
(因此为高音扬声器);
-
波形可知
V1
输出超前输入电压
Vs
,即
相位为正值
;
-
频率从
100Hz
到
100kHz
,两者波形从相位相反到基本重合,即相
位差逐渐减小,即相位从+180 下降到 0,与仿真结果相同;
·对低音扬声器:
-
随着频率的升高,
V2
(黄线)的电压减小,
即幅度比随频率升高而
降低
(因此为低音扬声器);
-
由波形可知
V2
输出落后输入电压
Vs
,即
相位为负值
;
-
频率从
100Hz
到
100kHz
,两者波形从重叠到基本相位相反,即相
位差逐渐增大,即
相位从
0
下降到
-180,与仿真结果相同。
第四题:计算并仿真证明从 vs 看进去的阻抗为一常数 16 欧姆。
第五题:比较二阶分频器的特性与一阶分频器特性有什么不同?
解:
以下数据在相应的频率选择相应的扬声器进行仿真得到。
(
以下所有波形红色为输入,黄色为输出
)

根据以上数据作图(matlab 作图)如下:
由图可知:
·在同一频率下,二阶分频器的幅频特性较好,滤波器的衰减较小,但相位
位移较大,瞬时性较差,响应较慢;
·一阶分频器的幅频特性较二阶差,滤波器的衰减较大,但相位位移较小,
瞬时性较好,有较好的瞬态响应。