古典概型、条件概率

1 概率

1.1 定义

定义 (概率的公理化定义):设 E E E 是随机试验,其样本空间 S S S ,对于 E E E 的每一事件 A A A 赋于一个实数,记为 P ( A ) P(A) P(A),称为事件 A A A 的概率,集合函数 P ( ⋅ ) P(\cdot) P() 满足下列条件:
(1) 非负性:对于每一个事件 A A A ,有 P ( A ) ≥ 0 P(A)\geq0 P(A)0
(2) 规范性: 对于必然事件 S S S ,有 P ( S ) = 1 P(S)=1 P(S)=1
(3) 可列可加性: 设 A 1 , A 2 , … A_1,A_2,… A1,A2,是一组两两互不相容的事件, 即对于 i ≠ j , A i A j = Φ , i , j = 1 , 2 , … i≠ j, A_iA_j = Φ, i,j = 1,2, … i=j,AiAj=Φ,i,j=1,2,则有 P ( A 1 ∪ A 2 ∪ ⋯ ) = P ( A 1 ) + P ( A 2 ) + ⋯ P(A_1 \cup A_2 \cup ⋯) = P(A_1) + P(A_2) + ⋯ P(A1A2)=P(A1)+P(A2)+

1.2 性质

(1) P ( ∅ ) = 0 P(\emptyset) = 0 P()=0
(2) (有限可加性) 若 A 1 , A 2 , … , A n A_1,A_2,…,A_n A1,A2,,An是两两互不相容的事件, 则 P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) P(A_1 \cup A_2 \cup ⋯ \cup A_n) = P(A_1) + P(A_2) + ⋯+P(A_n) P(A1A2An)=P(A1)+P(A2)++P(An)
(3) (差事件的概率) 对任意事件 A , B A,B A,B P ( B − A ) = P ( B ) − P ( A B ) P(B-A)=P(B)-P(AB) P(BA)=P(B)P(AB)
(4) 对于任一事件 A A A,有 P ( A ) ≤ 1 P(A) ≤ 1 P(A)1
(5) (逆事件的概率) 对任一事件 A A A P ( A ˉ ) = 1 − P ( A ) P(\bar A)=1-P(A) P(Aˉ)=1P(A)
(6) (加法公式) 对于任意两事件 A , B A,B A,B P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B) = P(A) + P(B) − P(AB) P(AB)=P(A)+P(B)P(AB)
推论: A 1 , A 2 , A 3 A_1, A_2,A_3 A1,A2,A3为任意三个事件,则有:
P ( A 1 ∪ A 2 ∪ A 3 ) = P ( A 1 ) + P ( A 2 ∪ A 3 ) − P ( A 1 ( A 2 ∪ A 3 ) ) = P ( A 1 ) + P ( A 2 ∪ A 3 ) − P ( A 1 A 2 ∪ A 1 A 3 ) ) = P ( A 1 ) + P ( A 2 ) + P ( A 3 ) − P ( A 1 A 2 ) − P ( A 1 A 3 ) − P ( A 2 A 3 ) + P ( A 1 A 2 A 3 ) \begin{aligned} P(A_1\cup A_2\cup A_3)&=P(A_1)+P(A_2\cup A_3)-P(A_1(A_2\cup A_3)) \\ &=P(A_1)+P(A_2\cup A_3)-P(A_1A_2\cup A_1A_3)) \\ &=P(A_1)+P(A_2)+P(A_3)-P(A_1A_2)-P(A_1A_3)-P(A_2A_3)+P(A_1A_2A_3) \end{aligned} P(A1A2A3)=P(A1)+P(A2A3)P(A1(A2A3))=P(A1)+P(A2A3)P(A1A2A1A3))=P(A1)+P(A2)+P(A3)P(A1A2)P(A1A3)P(A2A3)+P(A1A2A3)

2 古典概型

2.1 定义

定义:设 E E E 是试验, S S S E E E 的样本空间,若满足:
(1) 试验的样本空间的元素只有有限个
(2) 试验中每个基本事件发生的可能性相同
这种试验称为等可能概型或古典概型。

2.2 计算公式

设试验𝐸的样本空间 S = { e 1 , e 2 , . . . e 3 } S=\{e_1,e_2,...e_3\} S={e1,e2,...e3},且每个基本事件发生的可能性相同,若 A A A包含 k k k个基本事件,即则有 A = e i 1 ∪ e i 2 ∪ . . . e i k ∪ ( 1 ≤ i 1 < i 2 < . . . < i k ≤ n ) A=e_{i_1}\cup e_{i_2}\cup ...e_{i_k}\cup (1\leq i_1< i_2<...<i_k\leq n) A=ei1ei2...eik(1i1<i2<...<ikn)
P ( A ) = ∑ j = 1 k P ( { e i j } ) = k n = A 包 含 的 基 本 事 件 数 S 中 基 本 事 件 的 总 数 \begin{aligned} P(A)&=\sum_{j=1}^{k}P(\{e_{i_j}\}) \\ &=\frac {k}{n} \\ &=\frac {A包含的基本事件数}{S中基本事件的总数} \end{aligned} P(A)=j=1kP({eij})=nk=SA
经典问题:【三门问题】
问题描述:假设你在进行一个游戏节目。现给三扇门供你选择:一扇门后面是一辆轿车,另两扇门后面分别都是一头山羊。你的目的当然是要想得到比较值钱的轿车,但你却并不能看到门后面的真实情况。主持人先让你作第一次选择。在你选择了一扇门后,知道其余两扇门后面是什么的主持人,打开了另一扇门给你看,而且,当然,那里有一头山羊。现在主持人告诉你,你还有一次选择的机会。那么,请你考虑一下,你是坚持第一次的选择不变,还是改变第一次的选择,更有可能得到轿车?
在这里插入图片描述
如上图所示,玩家一开始选定的门有三种情况。在不换的情况下:开始选中一号门为车,则得到车;开始选中二号门为山羊,则得不到车;开始选中三号门为山羊,则得不到车;在这种情况下选中车的概率为 1 3 \frac {1}{3} 31在换的情况下:开始选中一号门为车,则得不到车;开始选中二号门为山羊,则得到车;开始选中三号门为山羊,则得到车;在这种情况下选中车的概率为 2 3 \frac {2}{3} 32。则换门更高概率获得车。
经典例题
在一批 n n n 个产品中,有 m m m 个次品,从这批产品中任取 k k k 个产品,求其恰有 l l l个 ( l ≤ m l ≤ m lm) 次品的概率。
:从 n n n个产品中任取 k k k个产品,共有 C n k C^k_n Cnk 种取法,故基本事件总数为 C n k C^k_n Cnk
A A A=“取出 k k k 个产品中恰有 l l l 个次品”,若事件 A A A发生,即从 m m m个次品中取 l l l 个次品,从 m − n m-n mn个正品中取 k − l k-l kl个正品,故事件 A A A所包含的基本事件数为 C m l ⋅ C n − m k − l C^l_m\cdot C_{n-m}^{k-l} CmlCnmkl
∴ P ( A ) = C m l ⋅ C n − m k − l C n k (超几何分布) \therefore P(A)=\frac {C^l_m\cdot C_{n-m}^{k-l}}{C^k_n}\tag {超几何分布} P(A)=CnkCmlCnmkl()

3 条件概率

3.1 定义

定义:设 A , B A, B A,B 是两个随机事件,且 P ( A ) > 0 P(A)>0 P(A)>0,称 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac {P(AB)}{P(A)} P(BA)=P(A)P(AB)为事件 A A A 发生的条件下事件 B B B发生的条件概率。

3.2 性质

条件概率 P ( ⋅ ∣ A ) P(\cdot|A) P(A) 满足概率的三个基本属性:
(1) 对于任一事件 B B B,有 P ( B ∣ A ) ≥ 0 P(B|A)\geq 0 P(BA)0
(2) P ( S ∣ A ) = 1 P(S|A)=1 P(SA)=1
(3) B 1 , B 2 , … B_1, B_2, … B1,B2,是两两不相容的事件,则有 P ( U i = 1 ∞ B i ∣ A ) = ∑ i = 1 ∞ P ( B i ∣ A ) P(U_{i=1}^{\infty} B_i|A)=\sum_{i=1}^{\infty}P(B_i|A) P(Ui=1BiA)=i=1P(BiA)
由于条件概率符合概率定义的三个条件,所以前面所证明的一些概率性质对于条件概率也同样适用,如:
对于任意事件 B 1 , B 2 B_1, B_2 B1,B2,有:
P ( B 1 ∪ B 2 ∣ A ) = P ( B 1 ∣ A ) + P ( B 2 ∣ A ) − P ( B 1 B 2 ∣ A ) P(B_1\cup B_2|A)= P(B_1|A)+ P(B_2|A)-P(B_1B_2|A) P(B1B2A)=P(B1A)+P(B2A)P(B1B2A)
对于任意事件 B B B,有:
P ( B ˉ ∣ A ) = 1 − P ( B ∣ A ) P(\bar B|A)=1-P(B|A) P(BˉA)=1P(BA)

3.3 乘法定理

定理(乘法定理) 对于任意的事件 A , B A, B A,B,若 P ( A ) > 0 P(A)>0 P(A)>0
P ( A B ) = P ( A ) P ( B ∣ A ) , 乘 法 公 式 P ( A B ) = P ( B ) P ( A ∣ B ) , P ( B ) > 0 \begin{aligned} P(AB)&=P(A)P(B|A),{乘法公式} \\ P(AB)&=P(B)P(A|B),{P(B)>0} \end{aligned} P(AB)P(AB)=P(A)P(BA)=P(B)P(AB)P(B)>0
乘法公式可以推广到多个事件的情形:
(1) A , B , C A,B,C A,B,C为事件,且 P ( A B ) > 0 P(AB)>0 P(AB)>0,则有
P ( A B C ) = P ( A ) P ( B ∣ A ) P ( C ∣ B A ) P(ABC)=P(A) P(B|A) P(C|BA) P(ABC)=P(A)P(BA)P(CBA)
(2) A 1 , A 2 , … A n A_1, A_2, …A_n A1,A2,An 为n个事件, 且 P ( A 1 A 2 … A n − 1 ) > 0 P(A_1A_2…A_{n-1})>0 P(A1A2An1)>0
P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P(A_1A_2\cdots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)
在某些问题中,条件概率是已知的或者是比较容易求得的,在这种情况下,就可以利用乘法公式来计算积事件的概率。
经典例题
设袋中装有 r r r只红球, t t t只白球. 每次自袋中任取一只球,观察其颜色然后放回,并再放入 a a a只与所取出的那只球同色的球.若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率。
:记 A i A_i Ai = “第 i i i次取到红球” , i i i = 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4,则 A ˉ i \bar A_i Aˉi = “第 i i i次取到白球” , i i i = 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4,所求概率为 P ( A 1 A 2 A ˉ 3 A ˉ 4 ) P(A_1A_2\bar A_3\bar A_4 ) P(A1A2Aˉ3Aˉ4)
P ( A 1 A 2 A ˉ 3 A ˉ 4 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A ˉ 3 ∣ A 1 A 2 ) P ( A ˉ 4 ∣ A 1 A 2 A ˉ 3 ) = r r + t ⋅ r + a r + t + a ⋅ t r + t + 2 a ⋅ t + a r + t + 3 a \begin{aligned} P(A_1A_2\bar A_3\bar A_4) &=P(A_1)P(A_2|A_1)P(\bar A_3|A_1A_2)P(\bar A_4|A_1A_2\bar A_3) \\ &=\frac {r}{r+t}\cdot \frac {r+a}{r+t+a}\cdot \frac{t}{r+t+2a}\cdot \frac{t+a}{r+t+3a} \end{aligned} P(A1A2Aˉ3Aˉ4)=P(A1)P(A2A1)P(Aˉ3A1A2)P(Aˉ4A1A2Aˉ3)=r+trr+t+ar+ar+t+2atr+t+3at+a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

八岁爱玩耍

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值