条件概率、联合概率、边缘概率的区别及独立事件、古典概型

深入学习机器学习、分布式算法才发现概率与统计,线代都很重要,下面我简单串一下如题目所示的知识

第一步:


P(A|B)是在条件B发生的情况下A发生的概率,P(AB)是条件A与B同时发生的概率。
关于条件概率、联合概率的例子我在最后一步骤举出,如独立事件和古典概型都懂,则请跳至最后一步看例子在这里插入图片描述
先记牢靠公式:
在这里插入图片描述

在这里,可以按照下图来理解:
P(AB)等于图中的A交B的部分的概率,而P(A|B)等于A交B的面积的占B空间的比值在这里插入图片描述

第二步:


独立事件即是指两个事件的发生不互相影响

例子: 今天我上街的概率是1/3,不上街的概率是2/3;你上街的概率是2/3,不上街的概率是1/3。则可设A事件为我上街,B事件为你上街,则P(A)=1/3 , P(B)=2/3,也有P(A|B)=P(AB)/P(B)=(1/3 * 2/3)/(2/3)=1/3=P(A)
而独立事件本身有的性质就为:在这里插入图片描述

第三步:


古典概型的特点:有限性和等可能性

例子: 盒子中有完全一样的10个球,其中6白,4黑,不放回的抽取两次,每次任取一球,求下列事件的概率:
(1)第二次才抽得白球(2)第二次抽得白球(3)至少有一个白球(4)如果已经发现有一个白球,求另一个也是白球的概率
解答:
(1)第二次才抽得白球:
也就是说,第一次抽得的不是白球,即第一次抽得黑球并且第二次抽得白球
第一次抽得黑球的概率是:4/10,
在第一次抽得黑球的前提下,第二次抽得白球的概率:6/9
所以第二次才抽得白球的概率:4/106/9 = 4/15
(2)第二次抽得白球:
包括第一次抽得白球和第一次抽得黑球两种情况,所以
第二次抽得白球的概率:4/10
6/9 + 6/105/9 = 3/5
(3)至少有一个白球:
就不用分第一次和第二次了。但包括了恰有2个白球和恰有1个白球
恰有1个白球的概率是 6/10
4/9+4/106/9= 8/15
恰有2个白球的概率是6/10
5/9= 1/3
所以至少有一个白球的概率是8/15+1/3 = 13/15

或者可以从反方面来,至少有一个白球的的反面是一个白球都没有,全是黑球。抽两次都是黑球的概率为:4/10*3/9=2/15
所以至少一次白球的概率为1-2/15=13/15

(4)相当于5个白球4个黑球中任取1个白球的概率:5/9

第四步(最后一步):


例子: 盒子中有完全一样的6个球,其中2红,3黑,1白。不放回抽取两次,求第一次摸出黑球的前提下,第二次摸出红球的概率
解答: 可设事件A为:第一次摸出黑球;事件B为:第二次摸出红球。那么问题变为求取P(B|A)
那么
P(A)的概率为:3/6 = 1/2
P(AB)表示为第一次摸出黑球 第二次摸出红球的概率,概率为:(3/6) * (2/5)=1/5
P(B|A)表示在第一次摸出黑球 的前提下 ,第二次摸出红球的概率,概率为(1/5)/(1/2)=2/5 (这是公式得出的结果,我们自己来验证一下:既然第一次已经确定摸出黑球了,那第二次摸之前盒子里面只有五个球了,此时红球有两个,黑球两个,白球一个,所以第二次摸出红球的概率为2/5。结果是对的)

总结:
条件概率是针对 缩减了的样本空间 的(本例中,因为是在事件A发生的前提下发生的,所以条件概率针对的样本空间直接就是5;所以P(B|A)发生的概率为2/5)
联合概率是针对 整个样本空间 的(此例的样本空间为6,因为有6个球),联合概率是指满足事件A又同时满足事件B的概率(本例中最开始样本空间为6,所以事件A的概率为3/6;满足了A事件之后,此时样本空间减少至五个,所以P(AB)发生的概率就是2/5;所以P(AB)才是3/6 * 2/5 =1/5)
边缘概率是相对联合概率的而言,只极端的考虑其中一个变量,比如本例中P(A)= 3/6 。拓展一下: 如果需要我们求取P(B)的话,应该怎么办。首先搞清楚P(B)指的是第二次摸到红球的概率,那第一次可以摸到白球也可以摸到红球也可以摸到黑球,所以分三种情况:(1)第一次摸到红球:2/6 * 1/5 =1/15 (2)第一次摸到黑球:3/6 * 2/5 = 1/5 (3)第一次摸到白球:1/6 * 2/5 =1/15。 所以P(B)= 1/15 + 1/5 +1/15 =1/3
最后拓展一下: 已经求取边缘概率P(B),那么问题如果改为求第二次摸到红球的前提下,第一次摸到黑球的概率(即求P(A|B))的话。解为:P(A|B) = P(AB)/P(B)=3/5( 这是公式得出的结果,我们自己又来验证一下:既然第二次必须要取出红球,那第一次就只能从一个红球,三个黑球,一个白球中取了,此时总共可以选的球的数量为5,而要求第一次取黑球,所以第一次取出黑球的概率为3/5,结果是对的

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
【大数据的统计学基础】课程列表 完整版 大数据的统计学基础 系列课程 第01周 面向小白的统计学:描述性统计(均值,中位数,众数,方差,标准差,与常见的统计图表) (共33页).pptx 完整版 大数据的统计学基础 系列课程 第02周 赌博设计:概率的基本概念,古典概型 (共44页).pptx 完整版 大数据的统计学基础 系列课程 第03周 每人脑袋里有个贝叶斯:条件概率与贝叶斯公式,独立性 (共35页).pptx 完整版 大数据的统计学基础 系列课程 第04周 啊!微积分:随机变量及其分布(二项分布,均匀分布,正态分布) (共44页).pptx 完整版 大数据的统计学基础 系列课程 第05周 万事皆由分布掌握:多维随机变量及其分布 (共45页).pptx 完整版 大数据的统计学基础 系列课程 第06周 砖家的统计学:随机变量的期望,方差与协方差 (共40页).pptx 完整版 大数据的统计学基础 系列课程 第07周 上帝之手,统计学的哲学基础:大数定律、中心极限定理与抽样分布 (共38页).pptx 完整版 大数据的统计学基础 系列课程 第08周 点数成金,从抽样推测规律之一:点估计与区间估计 (共26页).pptx 完整版 大数据的统计学基础 系列课程 第09周 点数成金,从抽样推测规律之二:参数估计 (共31页).pptx 完整版 大数据的统计学基础 系列课程 第10周 对或错?告别拍脑袋决策:基于正态总体的假设检验 (共47页).pptx 完整版 大数据的统计学基础 系列课程 第11周 扔掉正态分布:秩和检验 (共38页).pptx 完整版 大数据的统计学基础 系列课程 第12周 预测未来的技术:回归分析 (共37页).pptx 完整版 大数据的统计学基础 系列课程 第14周 沿着时间轴前进,预测电子商务业绩:时间序列分析简介 (共35页).pptx
### 回答1: 条件独立性是贝叶斯网络中的一个重要概念,它指的是在已知一些变量的条件下,另外一些变量之间的关系是独立的。贝叶斯网络可以利用这种条件独立性来简化全联合概率的计算。 全联合概率是指所有变量的联合概率,通常情况下,如果有n个变量,那么计算全联合概率需要计算2^n个概率值,这在实际应用中往往是不可行的。而贝叶斯网络可以通过将变量之间的关系表示为有向无环图,利用条件独立性将全联合概率分解为多个条件概率的乘积,从而大大简化了计算。 举个例子,假设有三个变量A、B、C,它们之间的关系如下图所示: ![bayesian_network](https://cdn.jsdelivr.net/gh/wangzhebufangqi/gitee_blog_images/bayesian_network.png) 在这个贝叶斯网络中,我们可以利用条件独立性将全联合概率分解为以下几个条件概率的乘积: P(A,B,C) = P(A) * P(B|A) * P(C|B) 这样,我们只需要计算每个条件概率的值,就可以得到全联合概率的值。这种分解方式可以大大简化计算,特别是在变量数目较多时,计算量会呈指数级增长,贝叶斯网络则可以将这个复杂度降低到线性级别。 因此,可以说条件独立性是贝叶斯网络简化全联合概率计算的基础。 ### 回答2: 条件独立性是贝叶斯网络简化全联合概率计算的基础。 贝叶斯网络是一种图模型,用于描述随机变量间的依赖关系。在贝叶斯网络中,节点表示随机变量,边表示变量之间的依赖关系。 全联合概率计算是指计算所有变量的联合概率分布,即每个变量取值的概率。对于n个变量的贝叶斯网络,全联合概率计算需要计算2^n个概率值。当变量数量较大时,全联合概率计算变得非常复杂和困难。 条件独立性假设是贝叶斯网络中的核心概念,它指的是给定一些特定变量的取值,某些变量之间的依赖关系可以被简化为独立关系。具体来说,如果在贝叶斯网络中,给定变量A和B的取值,变量C和D之间的依赖关系可以被A和B解释,那么我们可以说C和D在给定A和B的条件下是独立的。 条件独立性在贝叶斯网络中的作用是显著减少全联合概率计算的复杂性。通过使用条件独立性,我们可以将全联合概率计算分解为一系列局部条件概率计算。这样,我们只需要计算每个变量与其父节点的条件概率,然后根据条件独立性假设将这些局部条件概率相乘得到全联合概率。因此,条件独立性大大简化了计算过程,提高了计算效率。 综上所述,条件独立性是贝叶斯网络简化全联合概率计算的基础。通过合理利用条件独立性,我们可以将复杂且庞大的全联合概率计算问题转化为更简单的局部条件概率计算,更好地描述和推断贝叶斯网络中的概率关系。 ### 回答3: 条件独立性是贝叶斯网络简化全联合概率计算的基础,其原因如下: 首先,贝叶斯网络是一种用有向无环图表示随机变量之间依赖关系的概率图模型。其中,每个节点表示一个随机变量,边表示变量之间的依赖关系。有向边从父节点指向子节点,表示子节点依赖于父节点。 其次,贝叶斯网络利用条件独立性假设对联合概率进行简化计算。条件独立性是指在给定一个或多个变量的条件下,另外两个变量之间没有依赖关系。在贝叶斯网络中,节点的依赖关系可以通过条件独立性来确定。当两个节点在给定其父节点的条件下是条件独立的,则可以通过乘法法则将联合概率分解为条件概率的乘积形式。这种计算方式可以大大简化计算的复杂度。 最后,通过贝叶斯网络和条件独立性的结合,可以通过局部计算得到全局概率分布。这是因为,贝叶斯网络通过节点的父节点将联合概率分解为条件概率的乘积形式,而每个条件概率可以通过给定其父节点条件下的概率计算得到。因此,可以通过一系列的局部计算得到所需的全局概率分布。 综上所述,条件独立性是贝叶斯网络简化全联合概率计算的基础。其通过利用条件独立性假设,将联合概率分解为条件概率的乘积形式,并通过局部计算得到全局概率分布。这种计算方式大大简化了概率计算的复杂度,提高了贝叶斯网络的计算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值