古典、联合、条件概率

古典概型

定义: 也叫等可能模型,是一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。由法国数学家拉普拉斯(Laplace ) 提出的。

联合概率

表示两个事件共同发生的概率。A与B的联合概率表示为:

条件概率

就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为 P(A|B),读作“在B条件下A发生的概率”。

 实例:根据某地区调查资科,1990年城市职工和农民家庭中人均年收入划分的户数如下: 

 问:现从被调查的家庭中任取一户,已知其人均年收入在600元以下,试问是一个农民家庭的概率是多少?

答:记“抽得农民家庭”为事件A,“人均收入低于600元”为事件B。由所给数据,可知:

而同时属于“农民家庭”和“人均收入低于600元”的有413户,即有

 因此所求概率为:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值