注意:
转置卷积 (不是卷积的逆运算,是卷积运算)
代码(code)
:
import torch.nn as nn
import cv2
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
img = cv2.imread("1.jpg")
width = img.shape[1]
height = img.shape[2]
img = cv2.resize(img, (250, 250))
tran_tensor = transforms.ToTensor()
img = tran_tensor(img)
print("img.shape: ", img.shape)
print("type(img): ", type(img))
img = img.view(1, 3, 250, 250)
writer = SummaryWriter("logs")
Conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=2)
ConvTrans = nn.ConvTranspose2d(in_channels=3, out_channels=3, kernel_size=51)
img = img.reshape(3, 250, 250)
writer.add_image("input", img, 0)
# Transposed convolution
img = img.reshape(1, 3, 250, 250)
output_ConvTrans = ConvTrans(img)
print("output_ConvTrans.shape: ", output_ConvTrans.shape)
output_ConvTrans = output_ConvTrans.reshape(3, 300, 300)
writer.add_image("output_ConvTrans", output_ConvTrans, 1)
# Convolution
output_Conv = Conv(img)
print("output_Conv.shape: ", output_Conv.shape)
output_Conv = output_Conv.reshape(3, 124, 124)
writer.add_image("output_Conv", output_Conv, 2)
writer.close()
运行结果(result)
:
可视化(Tensorboard)
:
转置卷积的特征图与原图对比
The feature map of the transposed convolution is compared with the original image
卷积的特征图与原图对比
The feature map of the convolution is compared with the original image